The Casimir force, causality and the Gurzhi model
- URL: http://arxiv.org/abs/2002.01841v1
- Date: Wed, 5 Feb 2020 16:06:14 GMT
- Title: The Casimir force, causality and the Gurzhi model
- Authors: G. L. Klimchitskaya, V. M. Mostepanenko, Kailiang Yu, and L. M. Woods
- Abstract summary: An extended Drude model is applied to calculate the Casimir force between two metallic plates.
The contribution of the electron-electron scattering to the Casimir pressure is estimated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An extended Drude model, termed as the Gurzhi model, which takes into account
the electron-phonon and electron-electron interactions, is applied to calculate
the Casimir force between two metallic plates. It is shown that although the
dielectric permittivity of the Gurzhi model has a first order pole in the upper
half-plane of complex frequencies and, thus, violates the causality principle,
it can be used in a restricted frequency interval in combination with the
experimental permittivity determined by the optical data for the complex index
of refraction. The imaginary part of the Gurzhi dielectric permittivity of Au
at low frequencies demonstrates better agreement with the permittivity given by
the optical data than the simple Drude model. The Casimir pressure between two
Au plates is computed using the Gurzhi, Drude and plasma model approaches,
taking into account the optical data, as well as with the simple Drude and
plasma models. The contribution of the electron-electron scattering to the
Casimir pressure is estimated. Although a comparison with the measurement data
of two precise experiments show that the Gurzhi model does not resolve the
Casimir puzzle, the obtained results suggest further clarification of this
fundamental problem.
Related papers
- Optical signatures of dynamical excitonic condensates [38.42595111719131]
We show that optical spectroscopy can experimentally identify phase-trapped and phase-delocalized dynamical regimes of condensation.
In the weak-bias regime, the trapped dynamics of the order parameter's phase lead to an in-gap absorption line at a frequency almost independent of the bias voltage.
Close to the transition between the trapped and freely oscillating states, we find a strong response upon application of a weak electric probe field.
arXiv Detail & Related papers (2024-10-29T15:16:44Z) - Engineering biphoton spectral wavefunction in a silicon micro-ring resonator with split resonances [21.14676162428423]
Control of frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity.
Here, we demonstrate a cavity-enhanced photon-pair source that can generate both separable states and controllable entangled states.
Experiments and simulations demonstrate the capacity to manipulate the frequency-domain wavefunction in a silicon-based device.
arXiv Detail & Related papers (2024-08-24T14:23:21Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Casimir Effect Invalidates the Drude Model for Transverse Electric
Evanescent Waves [0.0]
We consider the Casimir pressure between two metallic plates and calculate the four contributions to it determined by the propagating and evanescent waves and by the transverse magnetic and transverse electric polarizations of the electromagnetic field.
It is shown that the total transverse magnetic contribution to the Casimir pressure due to both the propagating and evanescent waves and the transverse electric contribution due to only the propagating waves, computed by means of the Drude model, correlate well with the corresponding results obtained using the plasma model.
arXiv Detail & Related papers (2023-10-21T14:39:45Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Theory-experiment comparison for the Casimir force between metallic test
bodies: A spatially nonlocal dielectric response [0.0]
Lifshitz theory of Casimir force comes into conflict with measurement data if conduction electrons in metals to electromagnetic fluctuations is described by the well tested dissipative Drude model.
Here, we propose the spatially nonlocal phenomenological dielectric functions of metals which lead to nearly the same response, as the standard Drude model, to the propagating waves, but to a different response in the case of evanescent waves.
Results are used to compute the effective Casimir pressure between two parallel plates, the Casimir force between a sphere and a plate, and its gradient in configurations of the most precise experiments performed with both non
arXiv Detail & Related papers (2021-12-14T10:38:06Z) - Casimir Puzzle and Casimir Conundrum: Discovery and Search for
Resolution [0.0]
The Casimir entropy calculated in the framework of the Lifshitz theory violates the Nernst heat theorem.
The review presents a summary of the main facts on this subject on both theoretical and experimental sides.
arXiv Detail & Related papers (2021-04-03T18:40:46Z) - Non-Markovian perturbation theories for phonon effects in
strong-coupling cavity quantum electrodynamics [0.0]
phonon interactions are inevitable in cavity quantum electrodynamical systems based on solid-state emitters or fluorescent molecules.
It remains a significant theoretical challenge to describe such effects in a computationally efficient manner.
We consider four non-Markovian perturbative master equation approaches to describe such dynamics.
arXiv Detail & Related papers (2021-03-26T08:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.