Recent solution to the Casimir puzzle awaits its experimental confirmation
- URL: http://arxiv.org/abs/2506.14955v1
- Date: Tue, 17 Jun 2025 20:09:42 GMT
- Title: Recent solution to the Casimir puzzle awaits its experimental confirmation
- Authors: V. M. Mostepanenko, G. L. Klimchitskaya,
- Abstract summary: The validity of the Drude model in the area of transverse electric evanescent waves is investigated.<n>The success of the dissipationless plasma model in this area is also caused by the presence of a double pole.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The plausible resolution of the Casimir puzzle implying that the dissipative Drude model is not applicable in the area of transverse electric evanescent waves is discussed. Calculations show that for the propagating waves, as well for the evanescent waves with transverse magnetic polarization, the Drude model can beused in calculations of the Casimir force by the Lifshitz theory with no contradictions with the measurement data. The lateral component of magnetic field of the magnetic dipole oscillating near a metallic surface is computed for the parameters of experiment in preparation which is aimed to directly check the validity of the Drude model in the area of transverse electric evanescent waves. By comparing with the case of graphene, whose dielectric response is spatially nonlocal and possesses the double pole at zero frequency, it is hypothesized that the success of the dissipationless plasma model in this area is also caused by the presence of a double pole.
Related papers
- Quantum optical scattering by macroscopic lossy objects: A general approach [55.2480439325792]
We develop a general approach to describe the scattering of quantum light by a lossy macroscopic object placed in vacuum.<n>We exploit the input-output relation to connect the output state of the field to the input one.<n>We analyze the impact of the classical transmission and absorption dyadics on the transitions from ingoing to outgoing s-polariton.
arXiv Detail & Related papers (2024-11-27T17:44:29Z) - Bound polariton states in the Dicke-Ising model [41.94295877935867]
We present a study of hybrid light-matter excitations in cavity QED materials.<n>We derive the exact excitations of the system in the thermodynamic limit.
arXiv Detail & Related papers (2024-06-17T18:00:01Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - The Casimir Force between Two Graphene Sheets: 2D Fresnel Reflection
Coefficients, Contributions of Different Polarizations, and the Role of
Evanescent Waves [0.0]
We consider the Casimir pressure between two graphene sheets and contributions to it determined by evanescent and propagating waves with different polarizations.
By using the Lifshitz formula written along the real frequency axis, the contributions of the TM-polarized propagating and evanescent waves into the total pressure are determined.
arXiv Detail & Related papers (2023-11-01T08:28:38Z) - Casimir Effect Invalidates the Drude Model for Transverse Electric
Evanescent Waves [0.0]
We consider the Casimir pressure between two metallic plates and calculate the four contributions to it determined by the propagating and evanescent waves and by the transverse magnetic and transverse electric polarizations of the electromagnetic field.
It is shown that the total transverse magnetic contribution to the Casimir pressure due to both the propagating and evanescent waves and the transverse electric contribution due to only the propagating waves, computed by means of the Drude model, correlate well with the corresponding results obtained using the plasma model.
arXiv Detail & Related papers (2023-10-21T14:39:45Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Experimentum crucis for electromagnetic response of metals to evanescent
waves and the Casimir puzzle [0.0]
Casimir force calculated at large separations using the Lifshitz theory differs by a factor of 2 for metals described by the Drude or plasma models.
We argue that this difference is entirely determined by the contribution of transverse electric (s) evanescent waves.
arXiv Detail & Related papers (2022-11-14T11:15:16Z) - Theory-experiment comparison for the Casimir force between metallic test
bodies: A spatially nonlocal dielectric response [0.0]
Lifshitz theory of Casimir force comes into conflict with measurement data if conduction electrons in metals to electromagnetic fluctuations is described by the well tested dissipative Drude model.
Here, we propose the spatially nonlocal phenomenological dielectric functions of metals which lead to nearly the same response, as the standard Drude model, to the propagating waves, but to a different response in the case of evanescent waves.
Results are used to compute the effective Casimir pressure between two parallel plates, the Casimir force between a sphere and a plate, and its gradient in configurations of the most precise experiments performed with both non
arXiv Detail & Related papers (2021-12-14T10:38:06Z) - Casimir effect for magnetic media: Spatially nonlocal response to the
off-shell quantum fluctuation [0.0]
We extend the Lifshitz theory of the Casimir force to the case of two parallel magnetic metal plates.
We compute the gradient of the Casimir force between Ni-coated surfaces of a sphere and a plate using the alternative nonlocal response functions.
arXiv Detail & Related papers (2021-10-04T09:50:58Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.