Multimodal fusion of imaging and genomics for lung cancer recurrence
prediction
- URL: http://arxiv.org/abs/2002.01982v1
- Date: Wed, 5 Feb 2020 20:32:36 GMT
- Title: Multimodal fusion of imaging and genomics for lung cancer recurrence
prediction
- Authors: Vaishnavi Subramanian, Minh N. Do, Tanveer Syeda-Mahmood
- Abstract summary: Lung cancer has a high rate of recurrence in early-stage patients.
We demonstrate improved prediction of recurrence using linear Cox proportional hazards models with elastic net regularization.
- Score: 11.577999113548973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung cancer has a high rate of recurrence in early-stage patients. Predicting
the post-surgical recurrence in lung cancer patients has traditionally been
approached using single modality information of genomics or radiology images.
We investigate the potential of multimodal fusion for this task. By combining
computed tomography (CT) images and genomics, we demonstrate improved
prediction of recurrence using linear Cox proportional hazards models with
elastic net regularization. We work on a recent non-small cell lung cancer
(NSCLC) radiogenomics dataset of 130 patients and observe an increase in
concordance-index values of up to 10%. Employing non-linear methods from the
neural network literature, such as multi-layer perceptrons and visual-question
answering fusion modules, did not improve performance consistently. This
indicates the need for larger multimodal datasets and fusion techniques better
adapted to this biological setting.
Related papers
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Improving Lung Cancer Diagnosis and Survival Prediction with Deep Learning and CT Imaging [12.276877277186284]
Lung cancer is a major cancer-related deaths, and early diagnosis and treatment are crucial for improving patients' survival outcomes.
We propose to employ neural convolutional networks of networks obtained between the risk of lung cancer and the lungs in CT experiments.
Results demonstrate the effectiveness of both the mini-batched loss and binary cross-entropy to predict both lung cancer and the risk of the occurrence.
arXiv Detail & Related papers (2024-08-18T05:45:08Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
We introduce a multi-modal heterogeneous graph-based conditional feature-guided diffusion model for lymph node metastasis diagnosis based on CT images.
We propose a masked relational representation learning strategy, aiming to uncover the latent prognostic correlations and priorities of primary tumor and lymph node image representations.
arXiv Detail & Related papers (2024-05-15T17:52:00Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
We propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction.
We emphasize the unsupervised pretraining to capture the intrinsic interaction between tissue microenvironments in gigapixel whole slide images.
We evaluate our approach on both TCGA colon and rectum cancer cohorts, showing that the proposed approach is competitive and outperforms state-of-the-art studies.
arXiv Detail & Related papers (2023-07-22T00:59:26Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
We develop a multimodal late fusion approach to predict radiation therapy outcomes for non-small-cell lung cancer patients.
Experiments show that the proposed multimodal paradigm with an AUC equal to $90.9%$ outperforms each unimodal approach.
arXiv Detail & Related papers (2022-04-26T16:32:52Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.