Hybrid CNN with Chebyshev Polynomial Expansion for Medical Image Analysis
- URL: http://arxiv.org/abs/2504.06811v1
- Date: Wed, 09 Apr 2025 12:02:56 GMT
- Title: Hybrid CNN with Chebyshev Polynomial Expansion for Medical Image Analysis
- Authors: Abhinav Roy, Bhavesh Gyanchandani, Aditya Oza,
- Abstract summary: Lung cancer remains one of the leading causes of cancer-related mortality worldwide.<n>Traditional Convolutional Neural Networks (CNNs) have shown considerable promise in medical image analysis.<n>In this study, we propose a novel hybrid deep learning architecture that incorporates Chebyshev-CNN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung cancer remains one of the leading causes of cancer-related mortality worldwide, with early and accurate diagnosis playing a pivotal role in improving patient outcomes. Automated detection of pulmonary nodules in computed tomography (CT) scans is a challenging task due to variability in nodule size, shape, texture, and location. Traditional Convolutional Neural Networks (CNNs) have shown considerable promise in medical image analysis; however, their limited ability to capture fine-grained spatial-spectral variations restricts their performance in complex diagnostic scenarios. In this study, we propose a novel hybrid deep learning architecture that incorporates Chebyshev polynomial expansions into CNN layers to enhance expressive power and improve the representation of underlying anatomical structures. The proposed Chebyshev-CNN leverages the orthogonality and recursive properties of Chebyshev polynomials to extract high-frequency features and approximate complex nonlinear functions with greater fidelity. The model is trained and evaluated on benchmark lung cancer imaging datasets, including LUNA16 and LIDC-IDRI, achieving superior performance in classifying pulmonary nodules as benign or malignant. Quantitative results demonstrate significant improvements in accuracy, sensitivity, and specificity compared to traditional CNN-based approaches. This integration of polynomial-based spectral approximation within deep learning provides a robust framework for enhancing automated medical diagnostics and holds potential for broader applications in clinical decision support systems.
Related papers
- Dynamic Hypergraph Representation for Bone Metastasis Cancer Analysis [12.383707480056557]
Bone metastasis analysis plays a critical role in determining patient quality of life and treatment strategies.
We propose a dynamic hypergraph neural network (DyHG) that overcomes the edge construction limitations of traditional graph representations.
DyHG significantly outperforms state-of-the-art (SOTA) baselines, showcasing its ability to model complex biological interactions.
arXiv Detail & Related papers (2025-01-28T08:33:59Z) - Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
Lung cancer remains one of the leading causes of morbidity and mortality worldwide.
Computer-aided diagnosis (CAD) systems have proven effective in detecting and classifying pulmonary nodules.
Deep learning algorithms have markedly improved the accuracy and efficiency of pulmonary nodule analysis.
arXiv Detail & Related papers (2024-10-18T17:45:42Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features.<n> LTDiff++ is a multiscale latent diffusion model designed to enhance feature extraction in medical imaging.
arXiv Detail & Related papers (2024-10-05T02:13:57Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
We propose a novel deep learning network designed to accurately classify lung cancer subtype with multi-dimensional and multi-modality images.
The strength of the proposed model lies in its ability to dynamically process both paired CT-pathological image sets and independent CT image sets.
We also develop a contrastive constraint module, which quantitatively maps the cross-modality associations through network training.
arXiv Detail & Related papers (2024-07-18T01:42:00Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Interpretable CNN-Multilevel Attention Transformer for Rapid Recognition
of Pneumonia from Chest X-Ray Images [2.1408385210297656]
This paper develops a pneumonia recognition framework with interpretability to provide high-speed analytics support for medical practice.
To reduce the computational complexity to accelerate the recognition process, a novel multi-level self-attention mechanism within Transformer has been proposed.
The effectiveness of the proposed method has been demonstrated on the classic COVID-19 recognition task using the widespread pneumonia CXR image dataset.
arXiv Detail & Related papers (2022-10-29T12:12:03Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.