Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer
- URL: http://arxiv.org/abs/2308.00507v2
- Date: Wed, 13 Sep 2023 08:51:58 GMT
- Title: Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer
- Authors: Hexin Dong, Jiawen Yao, Yuxing Tang, Mingze Yuan, Yingda Xia, Jian
Zhou, Hong Lu, Jingren Zhou, Bin Dong, Le Lu, Li Zhang, Zaiyi Liu, Yu Shi,
Ling Zhang
- Abstract summary: This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
- Score: 37.55853672333369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer in which
the tumor-vascular involvement greatly affects the resectability and, thus,
overall survival of patients. However, current prognostic prediction methods
fail to explicitly and accurately investigate relationships between the tumor
and nearby important vessels. This paper proposes a novel learnable neural
distance that describes the precise relationship between the tumor and vessels
in CT images of different patients, adopting it as a major feature for
prognosis prediction. Besides, different from existing models that used CNNs or
LSTMs to exploit tumor enhancement patterns on dynamic contrast-enhanced CT
imaging, we improved the extraction of dynamic tumor-related texture features
in multi-phase contrast-enhanced CT by fusing local and global features using
CNN and transformer modules, further enhancing the features extracted across
multi-phase CT images. We extensively evaluated and compared the proposed
method with existing methods in the multi-center (n=4) dataset with 1,070
patients with PDAC, and statistical analysis confirmed its clinical
effectiveness in the external test set consisting of three centers. The
developed risk marker was the strongest predictor of overall survival among
preoperative factors and it has the potential to be combined with established
clinical factors to select patients at higher risk who might benefit from
neoadjuvant therapy.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
This study presents a model that predicts pCR in breast cancer patients using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps.
Our approach extracts features from both DCE MRI and ADC using an encoder with a self-attention mechanism, leveraging radiomics to guide feature extraction from tumor-related regions.
arXiv Detail & Related papers (2024-06-05T04:49:55Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options.
This research proposes a workflow and deep learning-based segmentation models to automatically assess tumor-vessel involvement.
arXiv Detail & Related papers (2023-10-01T10:39:38Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
Renal cell carcinoma represents a significant global health challenge with a low survival rate.
This research aimed to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma.
The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction.
arXiv Detail & Related papers (2023-07-07T13:09:07Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and
Surgical Margin via Contrast-Enhanced CT Imaging [26.162788846435365]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and carries a dismal prognosis.
We propose a novel deep neural network for the survival prediction of resectable PDAC patients, named as 3D Contrast-Enhanced Convolutional Long Short-Term Memory network(CE-ConvLSTM)
We present a multi-task CNN to accomplish both tasks of outcome and margin prediction where the network benefits from learning the tumor resection margin related features to improve survival prediction.
arXiv Detail & Related papers (2020-08-26T22:51:24Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Multimodal fusion of imaging and genomics for lung cancer recurrence
prediction [11.577999113548973]
Lung cancer has a high rate of recurrence in early-stage patients.
We demonstrate improved prediction of recurrence using linear Cox proportional hazards models with elastic net regularization.
arXiv Detail & Related papers (2020-02-05T20:32:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.