Fixed-Point Quantum Circuits for Quantum Field Theories
- URL: http://arxiv.org/abs/2002.02018v1
- Date: Wed, 5 Feb 2020 22:15:56 GMT
- Title: Fixed-Point Quantum Circuits for Quantum Field Theories
- Authors: Natalie Klco and Martin J. Savage
- Abstract summary: We use classically computed ground states in a small spatial volume to prepare non-interacting scalar field theories on quantum devices.
The derived quantum circuits are expected to be relevant already for near-term quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Renormalization group ideas and effective operators are used to efficiently
determine localized unitaries for preparing the ground states of
non-interacting scalar field theories on digital quantum devices. With these
methods, classically computed ground states in a small spatial volume can be
used to determine operators for preparing the ground state in a
beyond-classical quantum register, even for interacting scalar field theories.
Due to the exponential decay of correlation functions and the double
exponential suppression of digitization artifacts, the derived quantum circuits
are expected to be relevant already for near-term quantum devices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Universal Euler-Cartan Circuits for Quantum Field Theories [0.0]
A hybrid quantum-classical algorithm is presented for the computation of non-perturbative characteristics of quantum field theories.
The algorithm relies on a universal parametrized quantum circuit ansatz based on Euler and Cartan's decompositions of single and two-qubit operators.
arXiv Detail & Related papers (2024-07-31T01:59:09Z) - Direct Characteristic-Function Tomography of the Quantum States of
Quantum Fields [5.145146101802871]
We propose a strategy for implementing a direct readout of the symmetric characteristic function of the quantum states of quantum fields.
This strategy may serve as an essential in understanding and optimizing the control of quantum fields for relativistic quantum information applications.
arXiv Detail & Related papers (2023-10-20T14:15:14Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Complexified quantum field theory in operator form [0.0]
This formalism is free of many dubious mathematical situations characteristic to the standard treatment of quantum fields.
Proposed formalism offers adequate theoretical framework for proper description of the multicomponent fields, including quantum gravity.
arXiv Detail & Related papers (2022-09-09T07:37:27Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Simulation of Light-Front Parton Correlators [0.0]
The physics of high-energy colliders relies on the knowledge of non-perturbative parton correlators.
We propose a quantum algorithm to perform a quantum simulation of these type of correlators.
arXiv Detail & Related papers (2020-11-02T19:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.