Quantum Simulation of Light-Front Parton Correlators
- URL: http://arxiv.org/abs/2011.01275v2
- Date: Sat, 3 Jul 2021 10:15:16 GMT
- Title: Quantum Simulation of Light-Front Parton Correlators
- Authors: M.G. Echevarria, I.L. Egusquiza, E. Rico, G. Schnell
- Abstract summary: The physics of high-energy colliders relies on the knowledge of non-perturbative parton correlators.
We propose a quantum algorithm to perform a quantum simulation of these type of correlators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The physics of high-energy colliders relies on the knowledge of different
non-perturbative parton correlators, such as parton distribution functions,
that encode the information on universal hadron structure and are thus the main
building blocks of any factorization theorem of the underlying process in such
collision. These functions are given in terms of gauge-invariant light-front
operators, they are non-local in both space and real time, and are thus
intractable by standard lattice techniques due to the well-known sign problem.
In this paper, we propose a quantum algorithm to perform a quantum simulation
of these type of correlators, and illustrate it by considering a space-time
Wilson loop. We discuss the implementation of the quantum algorithm in terms of
quantum gates that are accessible within actual quantum technologies such as
cold atoms setups, trapped ions or superconducting circuits.
Related papers
- Universal Euler-Cartan Circuits for Quantum Field Theories [0.0]
A hybrid quantum-classical algorithm is presented for the computation of non-perturbative characteristics of quantum field theories.
The algorithm relies on a universal parametrized quantum circuit ansatz based on Euler and Cartan's decompositions of single and two-qubit operators.
arXiv Detail & Related papers (2024-07-31T01:59:09Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Orders of magnitude reduction in the computational overhead for quantum
many-body problems on quantum computers via an exact transcorrelated method [0.0]
We show that the Hamiltonian becomes non-Hermitian, posing problems for quantum algorithms based on the variational principle.
We overcome these limitations with the ansatz-based quantum imaginary time evolution algorithm.
Our work paves the way for the use of exact transcorrelated methods for the simulations of ab initio systems on quantum computers.
arXiv Detail & Related papers (2022-01-09T16:37:32Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.