Quantum vs classical dynamics in a spin-boson system: manifestations of
spectral correlations and scarring
- URL: http://arxiv.org/abs/2002.02465v2
- Date: Sat, 13 Mar 2021 00:55:33 GMT
- Title: Quantum vs classical dynamics in a spin-boson system: manifestations of
spectral correlations and scarring
- Authors: D Villasenor, S Pilatowsky-Cameo, M A Bastarrachea-Magnani, S
Lerma-Hernandez, L F Santos, and J G Hirsch
- Abstract summary: We compare the classical and quantum evolutions of the Dicke model in its regular and chaotic domains.
We identify features of the long-time dynamics that are purely quantum and discuss their impact on equilibration times.
In the case of maximal quantum ergodicity, our results are analytical and show that quantum equilibration takes longer than classical equilibration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We compare the entire classical and quantum evolutions of the Dicke model in
its regular and chaotic domains. This is a paradigmatic interacting spin-boson
model of great experimental interest. By studying the classical and quantum
survival probabilities of initial coherent states, we identify features of the
long-time dynamics that are purely quantum and discuss their impact on the
equilibration times. We show that the ratio between the quantum and classical
asymptotic values of the survival probability serves as a metric to determine
the proximity to a separatrix in the regular regime and to distinguish between
two manifestations of quantum chaos: scarring and ergodicity. In the case of
maximal quantum ergodicity, our results are analytical and show that quantum
equilibration takes longer than classical equilibration.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Quantumness and quantum to classical transition in the generalized Rabi
model [17.03191662568079]
We define the quantumness of a Hamiltonian by the free energy difference between its quantum and classical descriptions.
We show that the Jaynes-Cummings and anti Jaynes-Cummings models exhibit greater quantumness than the Rabi model.
arXiv Detail & Related papers (2023-11-12T18:24:36Z) - Timescales of quantum and classical chaotic spin models evolving toward equilibrium [0.0]
We investigate quench dynamics in a one-dimensional spin model, comparing both quantum and classical descriptions.
Numerical simulations, supported by semi-analytical analysis, reveal that the relaxation of single-particle energies (global quantity) and on-site magnetization (local observable) occurs on a timescale independent of the system size $L$.
arXiv Detail & Related papers (2023-07-11T18:00:04Z) - Dynamics of mixed quantum-classical spin systems [0.0]
Mixed quantum-classical spin systems have been proposed in spin chain theory, organic chemistry, and, more recently, spintronics.
Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties.
arXiv Detail & Related papers (2022-10-03T14:53:46Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum-classical correspondence in spin-boson equilibrium states at
arbitrary coupling [0.0]
equilibrium properties of nanoscale systems can deviate from standard thermodynamics due to their coupling to an environment.
For the generalised $theta$-angled spin-boson model, we first derive a compact and general form of the classical equilibrium state.
For the quantum spin-boson model we prove, by carefully taking a large spin limit, that Bohr's quantum-classical correspondence persists at all coupling strengths.
arXiv Detail & Related papers (2022-04-22T18:05:26Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Relaxation of non-integrable systems and correlation functions [0.0]
We investigate early-time equilibration rates of observables in closed many-body quantum systems.
We find evidence for this coincidence when the initial conditions are sufficiently generic, or typical.
Our findings are confirmed by proving that these different timescales coincide for dynamics generated by Haar-random Hamiltonians.
arXiv Detail & Related papers (2021-12-17T12:34:34Z) - Non-equilibrium dynamics of the open quantum $O(n)$-model with
non-Markovian noise: exact results [0.0]
The collective and purely relaxational dynamics of quantum many-body systems is studied.
The stationary state of the quantum dynamics is shown to be a non-equilibrium state.
arXiv Detail & Related papers (2021-06-15T15:41:52Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.