Quantum-classical correspondence in spin-boson equilibrium states at
arbitrary coupling
- URL: http://arxiv.org/abs/2204.10874v3
- Date: Tue, 13 Dec 2022 18:57:34 GMT
- Title: Quantum-classical correspondence in spin-boson equilibrium states at
arbitrary coupling
- Authors: Federico Cerisola, Marco Berritta, Stefano Scali, Simon A. R. Horsley,
James D. Cresser, Janet Anders
- Abstract summary: equilibrium properties of nanoscale systems can deviate from standard thermodynamics due to their coupling to an environment.
For the generalised $theta$-angled spin-boson model, we first derive a compact and general form of the classical equilibrium state.
For the quantum spin-boson model we prove, by carefully taking a large spin limit, that Bohr's quantum-classical correspondence persists at all coupling strengths.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The equilibrium properties of nanoscale systems can deviate significantly
from standard thermodynamics due to their coupling to an environment. For the
generalised $\theta$-angled spin-boson model, we first derive a compact and
general form of the classical equilibrium state including environmental
corrections to all orders. Secondly, for the quantum spin-boson model we prove,
by carefully taking a large spin limit, that Bohr's quantum-classical
correspondence persists at all coupling strengths. This correspondence gives
insight into the conditions for a coupled quantum spin to be well-approximated
by a coupled classical spin-vector. Thirdly, we demonstrate that previously
identified environment-induced 'coherences' in the equilibrium state of weakly
coupled quantum spins, do not disappear in the classical case. Finally, we
provide the first classification of the coupling parameter regimes for the
spin-boson model, from weak to ultrastrong, both for the quantum case and the
classical setting. Our results shed light on the interplay of quantum and mean
force corrections in equilibrium states of the spin-boson model, and will help
draw the quantum to classical boundary in a range of fields, such as magnetism
and exciton dynamics.
Related papers
- Certifying the quantumness of a nuclear spin qudit through its uniform precession [28.4073170440133]
We certify the quantumness of exotic states of a nuclear spin through its uniform precession.
The experiment is performed on a single spin-7/2 $123$Sb nucleus implanted in a silicon nanoelectronic device.
arXiv Detail & Related papers (2024-10-10T06:20:41Z) - Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Quantumness and quantum to classical transition in the generalized Rabi
model [17.03191662568079]
We define the quantumness of a Hamiltonian by the free energy difference between its quantum and classical descriptions.
We show that the Jaynes-Cummings and anti Jaynes-Cummings models exhibit greater quantumness than the Rabi model.
arXiv Detail & Related papers (2023-11-12T18:24:36Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Hybrid quantum-classical dynamics of pure-dephasing systems [0.0]
We consider the interaction dynamics of a classical oscillator and a quantum two-level system for different pure-dephasing Hamiltonians of the type $widehatH(q,p)=H_C(q,p)boldsymbol1+H_I(q,p)widehatsigma_z$.
arXiv Detail & Related papers (2023-03-08T12:22:00Z) - Dynamics of mixed quantum-classical spin systems [0.0]
Mixed quantum-classical spin systems have been proposed in spin chain theory, organic chemistry, and, more recently, spintronics.
Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties.
arXiv Detail & Related papers (2022-10-03T14:53:46Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z) - Quantum Brownian Motion for Magnets [0.0]
We derive a general spin operator equation of motion that describes three-dimensional precession and damping.
The results provide a powerful framework to explore general three-dimensional dissipation in quantum thermodynamics.
arXiv Detail & Related papers (2020-09-01T17:44:50Z) - Quantum vs classical dynamics in a spin-boson system: manifestations of
spectral correlations and scarring [0.0]
We compare the classical and quantum evolutions of the Dicke model in its regular and chaotic domains.
We identify features of the long-time dynamics that are purely quantum and discuss their impact on equilibration times.
In the case of maximal quantum ergodicity, our results are analytical and show that quantum equilibration takes longer than classical equilibration.
arXiv Detail & Related papers (2020-02-06T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.