論文の概要: RAID: Randomized Adversarial-Input Detection for Neural Networks
- arxiv url: http://arxiv.org/abs/2002.02776v1
- Date: Fri, 7 Feb 2020 13:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 05:12:17.279092
- Title: RAID: Randomized Adversarial-Input Detection for Neural Networks
- Title(参考訳): RAID:ニューラルネットワークのランダムな逆入力検出
- Authors: Hasan Ferit Eniser, Maria Christakis, Valentin W\"ustholz
- Abstract要約: 本稿では,2次分類器を訓練し,良性入力と逆性入力のニューロン活性化値の違いを識別する,逆性画像検出のための新しい手法であるRAIDを提案する。
RAIDは、一般的な6つの攻撃に対して評価すると、最先端技術よりも信頼性が高く、効果的である。
- 参考スコア(独自算出の注目度): 7.37305608518763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, neural networks have become the default choice for image
classification and many other learning tasks, even though they are vulnerable
to so-called adversarial attacks. To increase their robustness against these
attacks, there have emerged numerous detection mechanisms that aim to
automatically determine if an input is adversarial. However, state-of-the-art
detection mechanisms either rely on being tuned for each type of attack, or
they do not generalize across different attack types. To alleviate these
issues, we propose a novel technique for adversarial-image detection, RAID,
that trains a secondary classifier to identify differences in neuron activation
values between benign and adversarial inputs. Our technique is both more
reliable and more effective than the state of the art when evaluated against
six popular attacks. Moreover, a straightforward extension of RAID increases
its robustness against detection-aware adversaries without affecting its
effectiveness.
- Abstract(参考訳): 近年、ニューラルネットワークは、いわゆる敵攻撃に弱いにもかかわらず、画像分類やその他の多くの学習タスクのデフォルトの選択肢となっている。
これらの攻撃に対するロバスト性を高めるために、入力が逆方向かどうかを自動的に判断する多くの検出メカニズムが出現している。
しかし、最先端検出メカニズムは、攻撃の種類ごとに調整されるか、異なる攻撃タイプに一般化しないかのどちらかである。
そこで本研究では,2次分類器を訓練し,良性入力と逆入力のニューロン活性化値の差を同定する新しい逆画像検出手法であるraidを提案する。
本手法は6つの攻撃に対して評価した場合, 信頼性が高く, 有効性が高い。
さらに、RAIDの直接的な拡張は、その効果に影響を与えることなく、検出に注意する敵に対する堅牢性を高める。
関連論文リスト
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
セグメンテーションのためのニューラルネットワークに対する敵攻撃を検出する不確実性に基づく手法を提案する。
我々は,不確実性に基づく敵攻撃の検出と様々な最先端ニューラルネットワークの詳細な解析を行う。
提案手法の有効性を示す数値実験を行った。
論文 参考訳(メタデータ) (2024-08-19T14:13:30Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Identification of Attack-Specific Signatures in Adversarial Examples [62.17639067715379]
異なる攻撃アルゴリズムは, その効果だけでなく, 被害者の質的な影響も示している。
以上の結果から, 予測的対人攻撃は, 模擬モデルにおける成功率だけでなく, 被害者に対するより深い下流効果によって比較されるべきであることが示唆された。
論文 参考訳(メタデータ) (2021-10-13T15:40:48Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - ExAD: An Ensemble Approach for Explanation-based Adversarial Detection [17.455233006559734]
説明手法のアンサンブルを用いて逆例を検出するフレームワークであるExADを提案する。
3つの画像データセットに対する6つの最先端の敵攻撃によるアプローチの評価を行った。
論文 参考訳(メタデータ) (2021-03-22T00:53:07Z) - Adversarial robustness via stochastic regularization of neural
activation sensitivity [24.02105949163359]
両防衛目標を同時に扱う新しい防衛機構を提案する。
損失面の勾配を平坦化し、逆例を見つけるのが難しくなる。
さらに、ジャコビアン正則化を利用して、正しく分類された入力から決定を遠ざける。
論文 参考訳(メタデータ) (2020-09-23T19:31:55Z) - Adversarial Feature Desensitization [12.401175943131268]
本稿では,ドメイン適応分野からの洞察を基盤とした,対向ロバスト性に対する新しいアプローチを提案する。
提案手法は,入力の逆方向の摂動に対して不変な特徴を学習することを目的として,AFD(Adversarial Feature Desensitization)と呼ばれる。
論文 参考訳(メタデータ) (2020-06-08T14:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。