論文の概要: Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis
- arxiv url: http://arxiv.org/abs/2408.10021v1
- Date: Mon, 19 Aug 2024 14:13:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:03:38.455199
- Title: Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis
- Title(参考訳): 不確実性推定によるセマンティックセグメンテーションの敵攻撃検出:ディープ解析
- Authors: Kira Maag, Roman Resner, Asja Fischer,
- Abstract要約: セグメンテーションのためのニューラルネットワークに対する敵攻撃を検出する不確実性に基づく手法を提案する。
我々は,不確実性に基づく敵攻撃の検出と様々な最先端ニューラルネットワークの詳細な解析を行う。
提案手法の有効性を示す数値実験を行った。
- 参考スコア(独自算出の注目度): 12.133306321357999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have demonstrated remarkable effectiveness across a wide range of tasks such as semantic segmentation. Nevertheless, these networks are vulnerable to adversarial attacks that add imperceptible perturbations to the input image, leading to false predictions. This vulnerability is particularly dangerous in safety-critical applications like automated driving. While adversarial examples and defense strategies are well-researched in the context of image classification, there is comparatively less research focused on semantic segmentation. Recently, we have proposed an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation. We observed that uncertainty, as measured by the entropy of the output distribution, behaves differently on clean versus adversely perturbed images, and we utilize this property to differentiate between the two. In this extended version of our work, we conduct a detailed analysis of uncertainty-based detection of adversarial attacks including a diverse set of adversarial attacks and various state-of-the-art neural networks. Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method, which is lightweight and operates as a post-processing step, i.e., no model modifications or knowledge of the adversarial example generation process are required.
- Abstract(参考訳): ディープニューラルネットワークは、セマンティックセグメンテーションのような幅広いタスクで顕著な効果を示している。
それでもこれらのネットワークは、入力画像に知覚不能な摂動を付加する敵攻撃に弱いため、誤った予測がもたらされる。
この脆弱性は、特に自動化運転のような安全クリティカルなアプリケーションでは危険である。
画像分類の文脈では、敵対的な例や防衛戦略がよく研究されているが、セマンティックセグメンテーションに焦点を当てた研究は比較的少ない。
近年,セマンティックセグメンテーションのためのニューラルネットワークに対する敵攻撃を検出する不確実性に基づく手法を提案する。
出力分布のエントロピーによって測定された不確実性は、清浄な画像と不適切な摂動画像とで異なる挙動を示し、この特性を利用して両者を区別する。
この拡張バージョンでは、多様な敵攻撃や様々な最先端のニューラルネットワークを含む、不確実性に基づく敵攻撃の検出を詳細に分析する。
提案手法の有効性を示す数値実験を行い,提案手法の有効性について検討した。
関連論文リスト
- Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Uncertainty-based Detection of Adversarial Attacks in Semantic
Segmentation [16.109860499330562]
本稿では,セマンティックセグメンテーションにおける敵攻撃検出のための不確実性に基づくアプローチを提案する。
本研究は,複数種類の敵対的攻撃を対象とする摂動画像の検出能力を示す。
論文 参考訳(メタデータ) (2023-05-22T08:36:35Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-13T03:31:20Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
摂動と予測信頼の間にはコンプライアンスが存在することが分かり、予測信頼の面から少数の摂動攻撃を検出するための指針となる。
本研究では,画像ストリームが画素アーティファクトに注目し,勾配ストリームが信頼度アーティファクトに対応する2ストリームアーキテクチャによる画像空間を超えた手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T09:55:03Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。