Machine learning algorithms for three-dimensional mean-curvature
computation in the level-set method
- URL: http://arxiv.org/abs/2208.09047v1
- Date: Thu, 18 Aug 2022 20:19:22 GMT
- Title: Machine learning algorithms for three-dimensional mean-curvature
computation in the level-set method
- Authors: Luis \'Angel Larios-C\'ardenas and Fr\'ed\'eric Gibou
- Abstract summary: We propose a data-driven mean-curvature solver for the level-set method.
Our proposed system can yield more accurate mean-curvature estimations than modern particle-based interface reconstruction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a data-driven mean-curvature solver for the level-set method. This
work is the natural extension to $\mathbb{R}^3$ of our two-dimensional strategy
in [arXiv:2201.12342][1] and the hybrid inference system of [DOI:
10.1016/j.jcp.2022.111291][2]. However, in contrast to [1,2], which built
resolution-dependent neural-network dictionaries, here we develop a pair of
models in $\mathbb{R}^3$, regardless of the mesh size. Our feedforward networks
ingest transformed level-set, gradient, and curvature data to fix numerical
mean-curvature approximations selectively for interface nodes. To reduce the
problem's complexity, we have used the Gaussian curvature to classify stencils
and fit our models separately to non-saddle and saddle patterns. Non-saddle
stencils are easier to handle because they exhibit a curvature error
distribution characterized by monotonicity and symmetry. While the latter has
allowed us to train only on half the mean-curvature spectrum, the former has
helped us blend the data-driven and the baseline estimations seamlessly near
flat regions. On the other hand, the saddle-pattern error structure is less
clear; thus, we have exploited no latent information beyond what is known. In
this regard, we have trained our models on not only spherical but also
sinusoidal and hyperbolic paraboloidal patches. Our approach to building their
data sets is systematic but gleans samples randomly while ensuring
well-balancedness. We have also resorted to standardization and dimensionality
reduction as a preprocessing step and integrated regularization to minimize
outliers. In addition, we leverage curvature rotation/reflection invariance to
improve precision at inference time. Several experiments confirm that our
proposed system can yield more accurate mean-curvature estimations than modern
particle-based interface reconstruction and level-set schemes around
under-resolved regions.
Related papers
- Error-Correcting Neural Networks for Two-Dimensional Curvature
Computation in the Level-Set Method [0.0]
We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method.
Our main contribution is a redesigned hybrid solver that relies on numerical schemes to enable machine-learning operations on demand.
arXiv Detail & Related papers (2022-01-22T05:14:40Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Neural Fields as Learnable Kernels for 3D Reconstruction [101.54431372685018]
We present a novel method for reconstructing implicit 3D shapes based on a learned kernel ridge regression.
Our technique achieves state-of-the-art results when reconstructing 3D objects and large scenes from sparse oriented points.
arXiv Detail & Related papers (2021-11-26T18:59:04Z) - ViViT: Curvature access through the generalized Gauss-Newton's low-rank
structure [26.24282086797512]
Curvature in form of the Hessian or its generalized Gauss-Newton (GGN) approximation is valuable for algorithms that rely on a local model for the loss to train, compress, or explain deep networks.
We present ViViT, a curvature model that leverages the GGN's low-rank structure without further approximations.
arXiv Detail & Related papers (2021-06-04T17:37:47Z) - Level-Set Curvature Neural Networks: A Hybrid Approach [0.0]
We present a hybrid strategy based on deep learning to compute mean curvature in the level-set method.
The proposed inference system combines a dictionary of improved regression models with standard numerical schemes to estimate curvature more accurately.
Our findings confirm that machine learning is a promising venue for devising viable solutions to the level-set method's numerical shortcomings.
arXiv Detail & Related papers (2021-04-07T06:51:52Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - A deep learning approach for the computation of curvature in the
level-set method [0.0]
We propose a strategy to estimate the mean curvature of two-dimensional implicit in the level-set method.
Our approach is based on fitting feed-forward neural networks to synthetic data sets constructed from circular immersed in uniform grids of various resolutions.
arXiv Detail & Related papers (2020-02-04T00:49:47Z) - Curvature Regularized Surface Reconstruction from Point Cloud [4.389913383268497]
We propose a variational functional and fast algorithms to reconstruct implicit surface from point cloud data with a curvature constraint.
The proposed method shows against noise, and recovers concave features and sharp corners better compared to models without curvature constraint.
arXiv Detail & Related papers (2020-01-22T05:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.