Random Features Strengthen Graph Neural Networks
- URL: http://arxiv.org/abs/2002.03155v3
- Date: Mon, 18 Jan 2021 08:52:14 GMT
- Title: Random Features Strengthen Graph Neural Networks
- Authors: Ryoma Sato, Makoto Yamada, Hisashi Kashima
- Abstract summary: Graph neural networks (GNNs) are powerful machine learning models for various graph learning tasks.
In this paper, we demonstrate that GNNs become powerful just by adding a random feature to each node.
We show that the addition of random features enables GNNs to solve various problems that normal GNNs, including the graph convolutional networks (GCNs) and graph isomorphism networks (GINs) cannot solve.
- Score: 40.60905158071766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) are powerful machine learning models for various
graph learning tasks. Recently, the limitations of the expressive power of
various GNN models have been revealed. For example, GNNs cannot distinguish
some non-isomorphic graphs and they cannot learn efficient graph algorithms. In
this paper, we demonstrate that GNNs become powerful just by adding a random
feature to each node. We prove that the random features enable GNNs to learn
almost optimal polynomial-time approximation algorithms for the minimum
dominating set problem and maximum matching problem in terms of approximation
ratios. The main advantage of our method is that it can be combined with
off-the-shelf GNN models with slight modifications. Through experiments, we
show that the addition of random features enables GNNs to solve various
problems that normal GNNs, including the graph convolutional networks (GCNs)
and graph isomorphism networks (GINs), cannot solve.
Related papers
- GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - KerGNNs: Interpretable Graph Neural Networks with Graph Kernels [14.421535610157093]
Graph neural networks (GNNs) have become the state-of-the-art method in downstream graph-related tasks.
We propose a novel GNN framework, termed textit Kernel Graph Neural Networks (KerGNNs)
KerGNNs integrate graph kernels into the message passing process of GNNs.
We show that our method achieves competitive performance compared with existing state-of-the-art methods.
arXiv Detail & Related papers (2022-01-03T06:16:30Z) - On the Universality of Graph Neural Networks on Large Random Graphs [22.720758067273195]
We study the approximation power of Graph Neural Networks (GNNs) on latent position random graphs.
In the large graph limit, GNNs are known to converge to certain "continuous" models known as c-GNNs.
We show that c-SGNNs are strictly more powerful than c-GNNs in the continuous limit.
arXiv Detail & Related papers (2021-05-27T12:52:36Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Expressive Power of Invariant and Equivariant Graph Neural Networks [10.419350129060598]
We show that Folklore Graph Neural Networks (FGNN) are the most expressive architectures proposed so far for a given tensor order.
FGNNs are able to learn how to solve the problem, leading to much better average performances than existing algorithms.
arXiv Detail & Related papers (2020-06-28T16:35:45Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.