論文の概要: Multi-Label Class Balancing Algorithm for Action Unit Detection
- arxiv url: http://arxiv.org/abs/2002.03238v1
- Date: Sat, 8 Feb 2020 21:56:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 22:46:52.667167
- Title: Multi-Label Class Balancing Algorithm for Action Unit Detection
- Title(参考訳): アクションユニット検出のためのマルチラベルクラスバランシングアルゴリズム
- Authors: Jaspar Pahl, Ines Rieger, Dominik Seuss
- Abstract要約: 分離された顔の動き、いわゆるアクションユニットは、複合的な感情や痛みのような物理的状態を記述することができる。
この提出は、IEEE Conference on Face and Gesture Recognition 2020において、ABAW(Affective Behavior Analysis in-the-Wild)チャレンジの対象となっている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Isolated facial movements, so-called Action Units, can describe combined
emotions or physical states such as pain. As datasets are limited and mostly
imbalanced, we present an approach incorporating a multi-label class balancing
algorithm. This submission is subject to the Action Unit detection task of the
Affective Behavior Analysis in-the-wild (ABAW) challenge at the IEEE Conference
on Face and Gesture Recognition 2020.
- Abstract(参考訳): 分離された顔の動き、いわゆるアクションユニットは、複合的な感情や痛みのような物理的状態を記述することができる。
データセットは限定的で、ほとんど不均衡であるため、マルチラベルクラスバランシングアルゴリズムを組み込んだアプローチを提案する。
この提出は、IEEE Conference on Face and Gesture Recognition 2020におけるABAW(Affective Behavior Analysis in-the-Wild)チャレンジのアクションユニット検出タスクの対象となっている。
関連論文リスト
- The impact of Compositionality in Zero-shot Multi-label action recognition for Object-based tasks [4.971065912401385]
ゼロショットマルチラベル動作認識のための統一的なアプローチであるDual-VCLIPを提案する。
Dual-VCLIPは、マルチラベル画像分類のためのDualCoOp法を用いて、ゼロショット動作認識法であるVCLIPを強化する。
オブジェクトベースのアクションの大部分を含むCharadesデータセット上で,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-14T15:28:48Z) - Learning Disentangled Identifiers for Action-Customized Text-to-Image Generation [34.11373539564126]
本研究では,テキスト・ツー・イメージ(T2I)生成における新しいタスク,すなわちアクション・カスタマイズに焦点を当てた。
この課題の目的は、限られたデータから既存の行動を学び、それを見えない人間や動物に一般化することである。
論文 参考訳(メタデータ) (2023-11-27T14:07:13Z) - AIMS: All-Inclusive Multi-Level Segmentation [93.5041381700744]
視覚領域を3つのレベル(パート、エンティティ、リレーション)に分割するタスクであるAll-Inclusive Multi-Level(AIMS)を提案する。
また、アノテーションの不整合とタスク相関の2つの大きな課題に対処するために、マルチデータセットのマルチタスクトレーニングを通じて統合されたAIMSモデルを構築します。
論文 参考訳(メタデータ) (2023-05-28T16:28:49Z) - Multi-modal Multi-label Facial Action Unit Detection with Transformer [7.30287060715476]
本稿では,第3回ABAW(Affective Behavior Analysis)2022コンペティションについて述べる。
映像中の顔行動単位(FAU)を検出するためのトランスフォーマーモデルを提案した。
論文 参考訳(メタデータ) (2022-03-24T18:59:31Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
多くの実世界の模倣学習タスクでは、デモレーターと学習者は異なるが完全な観察空間で行動しなければならない。
本研究では、上記の学習問題を異種観察学習(HOIL)としてモデル化する。
本稿では,重要度重み付け,拒否学習,アクティブクエリに基づくIWREアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-17T05:44:04Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
利用可能な注釈付き発話が不足しているため、インテント検出は困難である。
セマンティック成分はマルチヘッド自己認識によって発話から蒸留される。
本手法はラベル付きインスタンスとラベルなしインスタンスの両方の表現を強化するための総合的なマッチング手段を提供する。
論文 参考訳(メタデータ) (2020-10-06T05:16:38Z) - Multi-label Learning with Missing Values using Combined Facial Action
Unit Datasets [0.0]
顔のアクションユニットは、人間の顔の感情を記述するのに使用できる顔のマイクロムーブメントの客観的で標準化された記述を可能にする。
アクションユニットのデータアノテートは高価で時間を要する作業であり、データ状況の不足につながる。
本稿では,欠落ラベルの存在下で学習可能なデータベースとアルゴリズムを組み合わせるためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-17T11:58:06Z) - FineGym: A Hierarchical Video Dataset for Fine-grained Action
Understanding [118.32912239230272]
FineGymは体操ビデオの上に構築された新しいアクション認識データセットだ。
アクションレベルとサブアクションレベルの両方で3レベルのセマンティック階層を持つテンポラリアノテーションを提供する。
この新たな粒度レベルは、行動認識に重大な課題をもたらす。
論文 参考訳(メタデータ) (2020-04-14T17:55:21Z) - Unique Class Group Based Multi-Label Balancing Optimizer for Action Unit
Detection [0.0]
バランスの最適化と拡張によって,アクションユニットの検出が向上することを示す。
我々はABAW(Affective Behavior Analysis in-the-wild)課題の3位にランクインした。
論文 参考訳(メタデータ) (2020-03-05T15:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。