論文の概要: Multi-label Learning with Missing Values using Combined Facial Action
Unit Datasets
- arxiv url: http://arxiv.org/abs/2008.07234v1
- Date: Mon, 17 Aug 2020 11:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 03:34:29.606784
- Title: Multi-label Learning with Missing Values using Combined Facial Action
Unit Datasets
- Title(参考訳): 複合顔行動単位データセットを用いた欠落値を用いたマルチラベル学習
- Authors: Jaspar Pahl, Ines Rieger, Dominik Seuss
- Abstract要約: 顔のアクションユニットは、人間の顔の感情を記述するのに使用できる顔のマイクロムーブメントの客観的で標準化された記述を可能にする。
アクションユニットのデータアノテートは高価で時間を要する作業であり、データ状況の不足につながる。
本稿では,欠落ラベルの存在下で学習可能なデータベースとアルゴリズムを組み合わせるためのアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial action units allow an objective, standardized description of facial
micro movements which can be used to describe emotions in human faces.
Annotating data for action units is an expensive and time-consuming task, which
leads to a scarce data situation. By combining multiple datasets from different
studies, the amount of training data for a machine learning algorithm can be
increased in order to create robust models for automated, multi-label action
unit detection. However, every study annotates different action units, leading
to a tremendous amount of missing labels in a combined database. In this work,
we examine this challenge and present our approach to create a combined
database and an algorithm capable of learning under the presence of missing
labels without inferring their values. Our approach shows competitive
performance compared to recent competitions in action unit detection.
- Abstract(参考訳): 顔のアクションユニットは、人間の顔の感情を記述するのに使用できる顔のマイクロムーブメントの客観的で標準化された記述を可能にする。
アクションユニットのデータアノテートは高価で時間を要する作業であり、データ状況の不足につながる。
異なる研究から得られた複数のデータセットを組み合わせることで、機械学習アルゴリズムのトレーニングデータの量を増やし、自動化されたマルチラベルアクションユニット検出のための堅牢なモデルを作成することができる。
しかし、すべての研究は異なるアクションユニットに注釈を付け、組み合わせたデータベースに膨大な量のラベルが失われる。
そこで本研究では,この課題を検証し,それらの値を推測することなく,ラベルの欠落下で学習可能なデータベースとアルゴリズムを組み合わせる手法を提案する。
提案手法は,最近の行動単位検出の競争と比較し,競争力を示す。
関連論文リスト
- Automatic Identification and Visualization of Group Training Activities Using Wearable Data [7.130450173185638]
Human Activity Recognition (HAR)は、スマートウォッチのようなウェアラブルデバイスによって収集された時系列データから日々のアクティビティを特定する。
本稿では,ウェアラブルデータからアクティビティを計算,分析,識別するための包括的枠組みを提案する。
当社のアプローチは、Garmin 55スマートウォッチを6ヶ月にわたって装着した135人の兵士から収集されたデータに基づいています。
論文 参考訳(メタデータ) (2024-10-07T19:35:15Z) - The impact of Compositionality in Zero-shot Multi-label action recognition for Object-based tasks [4.971065912401385]
ゼロショットマルチラベル動作認識のための統一的なアプローチであるDual-VCLIPを提案する。
Dual-VCLIPは、マルチラベル画像分類のためのDualCoOp法を用いて、ゼロショット動作認識法であるVCLIPを強化する。
オブジェクトベースのアクションの大部分を含むCharadesデータセット上で,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-14T15:28:48Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Weakly Supervised Multi-Task Representation Learning for Human Activity
Analysis Using Wearables [2.398608007786179]
本稿では,データを複数の表現空間にマッピングする方法を学習する,弱教師付きマルチ出力シムネットワークを提案する。
データサンプルの表現は、そのアスペクトで同じ意味を持つデータが互いに密接な位置にあるような空間に配置される。
論文 参考訳(メタデータ) (2023-08-06T08:20:07Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
本稿では、複数の視覚タスクを実行でき、他の下流タスクに効率的に適応できるモデルを提案する。
提案手法は,単一タスク状態モデルに匹敵する結果を達成し,下流タスクの強力な一般化を実証する。
論文 参考訳(メタデータ) (2023-06-29T17:59:57Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
動作認識のための複数のデータセットをうまく一般化することを目的として,ロバストな特徴表現の課題について検討する。
本稿では、情報損失と投影損失という2つの新しい損失項を設計した、新しいマルチデータセットトレーニングパラダイムであるMultiTrainを提案する。
本研究では,Kineetics-400,Kineetics-700,Moments-in-Time,Activitynet,Some-something-v2の5つの課題データセットに対して,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-09-26T01:30:43Z) - An Exploration of Active Learning for Affective Digital Phenotyping [4.790279027864381]
アクティブラーニング(英: Active Learning)は、アルゴリズムを用いてラベルに対するデータポイントの有用なサブセットを計算的に選択するパラダイムである。
自然主義的コンピュータビジョン感情データ(特に異種で複雑なデータ空間)のアクティブラーニングについて検討する。
ゲームプレイ中に生成された情報を用いた能動的学習は,同一数のラベル付きフレームのランダム選択よりも若干優れていた。
論文 参考訳(メタデータ) (2022-04-05T01:01:32Z) - Audio-Visual Fusion Layers for Event Type Aware Video Recognition [86.22811405685681]
マルチタスク学習方式において,個別のイベント固有のレイヤによるマルチセンサ統合問題に対処する新しいモデルを提案する。
我々のネットワークは単一のラベルで表現されているが、与えられたビデオを表現するために、さらに真のマルチラベルを出力できる。
論文 参考訳(メタデータ) (2022-02-12T02:56:22Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z) - Unique Class Group Based Multi-Label Balancing Optimizer for Action Unit
Detection [0.0]
バランスの最適化と拡張によって,アクションユニットの検出が向上することを示す。
我々はABAW(Affective Behavior Analysis in-the-wild)課題の3位にランクインした。
論文 参考訳(メタデータ) (2020-03-05T15:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。