論文の概要: MDEA: Malware Detection with Evolutionary Adversarial Learning
- arxiv url: http://arxiv.org/abs/2002.03331v2
- Date: Fri, 17 Apr 2020 02:26:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 14:33:49.866840
- Title: MDEA: Malware Detection with Evolutionary Adversarial Learning
- Title(参考訳): MDEA:進化的敵対学習によるマルウェア検出
- Authors: Xiruo Wang and Risto Miikkulainen
- Abstract要約: MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
- 参考スコア(独自算出の注目度): 16.8615211682877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malware detection have used machine learning to detect malware in programs.
These applications take in raw or processed binary data to neural network
models to classify as benign or malicious files. Even though this approach has
proven effective against dynamic changes, such as encrypting, obfuscating and
packing techniques, it is vulnerable to specific evasion attacks where that
small changes in the input data cause misclassification at test time. This
paper proposes a new approach: MDEA, an Adversarial Malware Detection model
uses evolutionary optimization to create attack samples to make the network
robust against evasion attacks. By retraining the model with the evolved
malware samples, its performance improves a significant margin.
- Abstract(参考訳): マルウェア検出は機械学習を使ってプログラム内のマルウェアを検出する。
これらのアプリケーションは、生または処理されたバイナリデータをニューラルネットワークモデルに取り込み、良性または悪意のあるファイルとして分類する。
このアプローチは暗号化、難読化、パッキングといった動的変更に対して有効であることが証明されているが、入力データの小さな変更がテスト時に誤分類を引き起こす特定の回避攻撃に対して脆弱である。
MDEA(Adversarial Malware Detection model)は、進化的最適化を用いて攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルをトレーニングすることで、その性能は大幅に向上する。
関連論文リスト
- Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - FGAM:Fast Adversarial Malware Generation Method Based on Gradient Sign [16.16005518623829]
敵対的攻撃は、敵対的サンプルを生成することによって、ディープラーニングモデルを欺くことである。
本稿では,FGAM(Fast Generate Adversarial Malware)を提案する。
FGAMが生成したマルウェア偽装モデルの成功率は,既存手法と比較して約84%増加することが実験的に検証された。
論文 参考訳(メタデータ) (2023-05-22T06:58:34Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Flexible Android Malware Detection Model based on Generative Adversarial
Networks with Code Tensor [7.417407987122394]
既存のマルウェア検出方法は、既存の悪意のあるサンプルのみを対象としている。
本稿では,マルウェアとその変異を効率的に検出する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T03:20:34Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
既存のマルウェア検出方法は、トレーニングデータセットに難読化されたマルウェアサンプルが存在する場合、異なるマルウェアファミリーを正しく分類できない。
そこで我々は,このような制御フロー難読化技術に対して耐性を持つ,タスク対応の複数ショット学習型サイメスニューラルネットワークを提案する。
提案手法は,同一のマルウェアファミリーに属するマルウェアサンプルを正しく分類し,ユニークなマルウェアシグネチャの認識に極めて有効である。
論文 参考訳(メタデータ) (2021-10-26T04:44:13Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。