MDEA: Malware Detection with Evolutionary Adversarial Learning
- URL: http://arxiv.org/abs/2002.03331v2
- Date: Fri, 17 Apr 2020 02:26:30 GMT
- Title: MDEA: Malware Detection with Evolutionary Adversarial Learning
- Authors: Xiruo Wang and Risto Miikkulainen
- Abstract summary: MDEA, an Adversarial Malware Detection model uses evolutionary optimization to create attack samples to make the network robust against evasion attacks.
By retraining the model with the evolved malware samples, its performance improves a significant margin.
- Score: 16.8615211682877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malware detection have used machine learning to detect malware in programs.
These applications take in raw or processed binary data to neural network
models to classify as benign or malicious files. Even though this approach has
proven effective against dynamic changes, such as encrypting, obfuscating and
packing techniques, it is vulnerable to specific evasion attacks where that
small changes in the input data cause misclassification at test time. This
paper proposes a new approach: MDEA, an Adversarial Malware Detection model
uses evolutionary optimization to create attack samples to make the network
robust against evasion attacks. By retraining the model with the evolved
malware samples, its performance improves a significant margin.
Related papers
- Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
We propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information.
By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples.
We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks.
arXiv Detail & Related papers (2023-06-06T14:45:24Z) - FGAM:Fast Adversarial Malware Generation Method Based on Gradient Sign [16.16005518623829]
Adversarial attacks are to deceive the deep learning model by generating adversarial samples.
This paper proposes FGAM (Fast Generate Adversarial Malware), a method for fast generating adversarial malware.
It is experimentally verified that the success rate of the adversarial malware deception model generated by FGAM is increased by about 84% compared with existing methods.
arXiv Detail & Related papers (2023-05-22T06:58:34Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Flexible Android Malware Detection Model based on Generative Adversarial
Networks with Code Tensor [7.417407987122394]
Existing malware detection methods only target at the existing malicious samples.
In this paper, we propose a novel scheme that detects malware and its variants efficiently.
arXiv Detail & Related papers (2022-10-25T03:20:34Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
Existing malware detection methods fail to correctly classify different malware families when obfuscated malware samples are present in the training dataset.
We propose a novel task-aware few-shot-learning-based Siamese Neural Network that is resilient against such control flow obfuscation techniques.
Our proposed approach is highly effective in recognizing unique malware signatures, thus correctly classifying malware samples that belong to the same malware family.
arXiv Detail & Related papers (2021-10-26T04:44:13Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
We show how a malicious actor trains a surrogate model to discover binary mutations that cause an instance to be misclassified.
Then, mutated malware is sent to the victim model that takes the place of an antivirus API to test whether it can evade detection.
arXiv Detail & Related papers (2021-06-15T03:31:02Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNN is a novel approach to automatically generate evasive malware variants without restrictions.
MalRNN effectively evades three recent deep learning-based malware detectors and outperforms current benchmark methods.
arXiv Detail & Related papers (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.