論文の概要: Trust in Data Science: Collaboration, Translation, and Accountability in
Corporate Data Science Projects
- arxiv url: http://arxiv.org/abs/2002.03389v1
- Date: Sun, 9 Feb 2020 15:50:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 14:26:36.881659
- Title: Trust in Data Science: Collaboration, Translation, and Accountability in
Corporate Data Science Projects
- Title(参考訳): データサイエンスにおける信頼--コーポレートデータサイエンスプロジェクトにおけるコラボレーション、翻訳、説明責任
- Authors: Samir Passi, Steven J. Jackson
- Abstract要約: 応用データサイエンスにおける4つの一般的な緊張関係について述べる: (un)equivocal number, (counter)intuitive knowledge, (in)credible data, (in)scrutable model。
組織的アクターが、懐疑主義、評価、信頼性の実践を通じて、乱雑で不確実な分析条件下で信頼を確立し、再交渉する方法を示す。
我々は,CSCW内外におけるデータサイエンス研究と実践における知見の意味を論じることによって,結論を導いた。
- 参考スコア(独自算出の注目度): 6.730787776951012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The trustworthiness of data science systems in applied and real-world
settings emerges from the resolution of specific tensions through situated,
pragmatic, and ongoing forms of work. Drawing on research in CSCW, critical
data studies, and history and sociology of science, and six months of immersive
ethnographic fieldwork with a corporate data science team, we describe four
common tensions in applied data science work: (un)equivocal numbers,
(counter)intuitive knowledge, (in)credible data, and (in)scrutable models. We
show how organizational actors establish and re-negotiate trust under messy and
uncertain analytic conditions through practices of skepticism, assessment, and
credibility. Highlighting the collaborative and heterogeneous nature of
real-world data science, we show how the management of trust in applied
corporate data science settings depends not only on pre-processing and
quantification, but also on negotiation and translation. We conclude by
discussing the implications of our findings for data science research and
practice, both within and beyond CSCW.
- Abstract(参考訳): 応用および実世界の環境におけるデータサイエンスシステムの信頼性は、位置し、実用的で、進行中の作業形態を通じて、特定の緊張の解消から生まれる。
CSCWの研究、批判的データ研究、科学の歴史と社会学、および企業データサイエンスチームとの6ヶ月にわたる没入型エスノグラフィフィールドワークに基づき、応用データサイエンス研究における4つの一般的な緊張関係を記述した: (un)equivocal numbers, (counter)直観的知識, (in)credible data, (in)scrutable model。
組織的アクターが、懐疑主義、評価、信頼性の実践を通じて、乱雑で不確実な分析条件下で信頼を確立し、再交渉する方法を示す。
実世界のデータサイエンスのコラボレーティブで異質な性質を高く評価することにより,企業データサイエンスにおける信頼管理が,事前処理や定量化だけでなく,交渉や翻訳にも依存することを示す。
我々は,CSCW内外におけるデータサイエンス研究と実践における知見の意味を論じる。
関連論文リスト
- SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents [49.54155332262579]
我々は,科学論文のデータセット,メソッド,タスクに関連するエンティティに対して,新たなエンティティと関係抽出データセットをリリースする。
我々のデータセットには、24k以上のエンティティと12kの関係を持つ106の注釈付きフルテキストの科学出版物が含まれています。
論文 参考訳(メタデータ) (2024-10-28T15:56:49Z) - DSBench: How Far Are Data Science Agents to Becoming Data Science Experts? [58.330879414174476]
現実的なタスクでデータサイエンスエージェントを評価するためのベンチマークであるDSBenchを紹介する。
このベンチマークには、466のデータ分析タスクと、EloquenceとKaggleのコンペからソースされた74のデータモデリングタスクが含まれている。
現状のLLM, LVLM, エージェントを評価したところ, 最高のエージェントはデータ解析タスクの34.12%しか解決できず, RPG(Relative Performance Gap)は34.74%であった。
論文 参考訳(メタデータ) (2024-09-12T02:08:00Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - Data Science for Social Good [2.8621556092850065]
本稿では,「データ・サイエンス・フォー・ソーシャル・グッド」(DSSG)研究の枠組みについて述べる。
本研究では,情報システムにおけるDSSG研究の質を実証的に示すために,文献の分析を行う。
この記事と特別号が今後のDSSG研究を刺激することを期待している。
論文 参考訳(メタデータ) (2023-11-02T15:40:20Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - TAPS Responsibility Matrix: A tool for responsible data science by
design [2.2973034509761816]
データサイエンスプロジェクトの社会的、法的、倫理的側面を探求する枠組みとして、透明性、説明責任、プライバシー、社会責任マトリックス(TAPS-RM)について述べる。
TAPS-RMの開発モデルと、オープンデータのためのよく知られたイニシアチブをマッピングする。
TAPS-RMはデータサイエンスプロジェクトレベルでの責任を反映するツールであり、設計による責任あるデータサイエンスの推進に利用することができると結論付けている。
論文 参考訳(メタデータ) (2023-02-02T12:09:14Z) - Modeling Information Change in Science Communication with Semantically
Matched Paraphrases [50.67030449927206]
SPICEDは、情報変化の度合いに注釈を付けた科学的な発見の最初のパラフレーズデータセットである。
SPICEDには、ニュース記事、ソーシャルメディアの議論、オリジナル論文の全文から抽出された6000の科学的発見ペアが含まれている。
SPICEDで訓練されたモデルは、実世界の科学的主張の事実チェックのための証拠検索において下流のパフォーマンスを改善する。
論文 参考訳(メタデータ) (2022-10-24T07:44:38Z) - SciTweets -- A Dataset and Annotation Framework for Detecting Scientific
Online Discourse [2.3371548697609303]
科学的な話題、主張、資源は、オンライン談話の一部としてますます議論されている。
これにより、社会的な影響が大きくなり、様々な分野からの科学的オンライン談話への関心が高まった。
専門分野にわたる研究は、現在、科学関連の様々な形態の堅牢な定義の欠如に悩まされている。
論文 参考訳(メタデータ) (2022-06-15T08:14:55Z) - Model Positionality and Computational Reflexivity: Promoting Reflexivity
in Data Science [10.794642538442107]
データサイエンスの作業を理解するための枠組みを提供するために,位置性や反射性の概念をどのように適応させるかを説明する。
データサイエンスの仕事にこれらの概念を適用する上での課題について述べ,将来性のあるソリューションとしてアノテータのフィンガープリントと位置マイニングを提供する。
論文 参考訳(メタデータ) (2022-03-08T16:02:03Z) - A survey study of success factors in data science projects [0.0]
アジャイルデータサイエンスのライフサイクルは最も広く使われているフレームワークであるが、調査参加者の25%だけがデータサイエンスプロジェクトの方法論に従うと答えている。
プロジェクト方法論に従うプロフェッショナルは、プロジェクトの潜在的なリスクと落とし穴に重点を置いています。
論文 参考訳(メタデータ) (2022-01-17T09:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。