Line Hypergraph Convolution Network: Applying Graph Convolution for
Hypergraphs
- URL: http://arxiv.org/abs/2002.03392v1
- Date: Sun, 9 Feb 2020 16:05:17 GMT
- Title: Line Hypergraph Convolution Network: Applying Graph Convolution for
Hypergraphs
- Authors: Sambaran Bandyopadhyay, Kishalay Das, M. Narasimha Murty
- Abstract summary: We propose a novel technique to apply graph convolution on hypergraphs with variable hyperedge sizes.
We use the classical concept of line graph of a hypergraph for the first time in the hypergraph learning literature.
- Score: 18.7475578342125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network representation learning and node classification in graphs got
significant attention due to the invent of different types graph neural
networks. Graph convolution network (GCN) is a popular semi-supervised
technique which aggregates attributes within the neighborhood of each node.
Conventional GCNs can be applied to simple graphs where each edge connects only
two nodes. But many modern days applications need to model high order
relationships in a graph. Hypergraphs are effective data types to handle such
complex relationships. In this paper, we propose a novel technique to apply
graph convolution on hypergraphs with variable hyperedge sizes. We use the
classical concept of line graph of a hypergraph for the first time in the
hypergraph learning literature. Then we propose to use graph convolution on the
line graph of a hypergraph. Experimental analysis on multiple real world
network datasets shows the merit of our approach compared to state-of-the-arts.
Related papers
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - Hybrid Graph: A Unified Graph Representation with Datasets and
Benchmarks for Complex Graphs [27.24150788635981]
We introduce the concept of hybrid graphs and present the Hybrid Graph Benchmark (HGB)
HGB contains 23 real-world hybrid graph datasets across various domains such as biology, social media, and e-commerce.
We provide an evaluation framework and a supporting framework to facilitate the training and evaluation of Graph Neural Networks (GNNs) on HGB.
arXiv Detail & Related papers (2023-06-08T11:15:34Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - HyperSAGE: Generalizing Inductive Representation Learning on Hypergraphs [24.737560790401314]
We present HyperSAGE, a novel hypergraph learning framework that uses a two-level neural message passing strategy to accurately and efficiently propagate information through hypergraphs.
We show that HyperSAGE outperforms state-of-the-art hypergraph learning methods on representative benchmark datasets.
arXiv Detail & Related papers (2020-10-09T13:28:06Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.