Hybrid Graph: A Unified Graph Representation with Datasets and
Benchmarks for Complex Graphs
- URL: http://arxiv.org/abs/2306.05108v2
- Date: Tue, 20 Feb 2024 13:43:38 GMT
- Title: Hybrid Graph: A Unified Graph Representation with Datasets and
Benchmarks for Complex Graphs
- Authors: Zehui Li, Xiangyu Zhao, Mingzhu Shen, Guy-Bart Stan, Pietro Li\`o,
Yiren Zhao
- Abstract summary: We introduce the concept of hybrid graphs and present the Hybrid Graph Benchmark (HGB)
HGB contains 23 real-world hybrid graph datasets across various domains such as biology, social media, and e-commerce.
We provide an evaluation framework and a supporting framework to facilitate the training and evaluation of Graph Neural Networks (GNNs) on HGB.
- Score: 27.24150788635981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are widely used to encapsulate a variety of data formats, but
real-world networks often involve complex node relations beyond only being
pairwise. While hypergraphs and hierarchical graphs have been developed and
employed to account for the complex node relations, they cannot fully represent
these complexities in practice. Additionally, though many Graph Neural Networks
(GNNs) have been proposed for representation learning on higher-order graphs,
they are usually only evaluated on simple graph datasets. Therefore, there is a
need for a unified modelling of higher-order graphs, and a collection of
comprehensive datasets with an accessible evaluation framework to fully
understand the performance of these algorithms on complex graphs. In this
paper, we introduce the concept of hybrid graphs, a unified definition for
higher-order graphs, and present the Hybrid Graph Benchmark (HGB). HGB contains
23 real-world hybrid graph datasets across various domains such as biology,
social media, and e-commerce. Furthermore, we provide an extensible evaluation
framework and a supporting codebase to facilitate the training and evaluation
of GNNs on HGB. Our empirical study of existing GNNs on HGB reveals various
research opportunities and gaps, including (1) evaluating the actual
performance improvement of hypergraph GNNs over simple graph GNNs; (2)
comparing the impact of different sampling strategies on hybrid graph learning
methods; and (3) exploring ways to integrate simple graph and hypergraph
information. We make our source code and full datasets publicly available at
https://zehui127.github.io/hybrid-graph-benchmark/.
Related papers
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - High-Order Relation Construction and Mining for Graph Matching [36.880853889521845]
Iterated line graphs are introduced for the first time to describe high-order information.
We present a new graph matching method, called High-order Graph Matching Network (HGMN)
By imposing practical constraints, HGMN is made scalable to large-scale graphs.
arXiv Detail & Related papers (2020-10-09T03:30:02Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Line Hypergraph Convolution Network: Applying Graph Convolution for
Hypergraphs [18.7475578342125]
We propose a novel technique to apply graph convolution on hypergraphs with variable hyperedge sizes.
We use the classical concept of line graph of a hypergraph for the first time in the hypergraph learning literature.
arXiv Detail & Related papers (2020-02-09T16:05:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.