論文の概要: A Study of Human Summaries of Scientific Articles
- arxiv url: http://arxiv.org/abs/2002.03604v1
- Date: Mon, 10 Feb 2020 08:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 08:47:52.651572
- Title: A Study of Human Summaries of Scientific Articles
- Title(参考訳): 科学論文の要約についての一考察
- Authors: Odellia Boni, Guy Feigenblat, Doron Cohen, Haggai Roitman, David
Konopnicki
- Abstract要約: これらのプラットフォームのうちの1つで共有されている要約を分析します。
目的は、科学的論文の人間の要約を特徴づけ、既存の自動要約システムの改善と適応のために得られた洞察を利用することである。
- 参考スコア(独自算出の注目度): 23.54266983884704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers and students face an explosion of newly published papers which
may be relevant to their work. This led to a trend of sharing human summaries
of scientific papers. We analyze the summaries shared in one of these platforms
Shortscience.org. The goal is to characterize human summaries of scientific
papers, and use some of the insights obtained to improve and adapt existing
automatic summarization systems to the domain of scientific papers.
- Abstract(参考訳): 研究者や学生は、新たに出版された論文の爆発に直面している。
これは科学論文の人間の要約を共有する傾向に繋がった。
これらのプラットフォームのひとつで共有されている要約を分析します。
目標は、科学論文の人間の要約を特徴付け、既存の科学論文の領域に既存の自動要約システムの改善と適応のために得られた洞察を利用することである。
関連論文リスト
- ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - MIReAD: Simple Method for Learning High-quality Representations from
Scientific Documents [77.34726150561087]
論文の高品質な表現を学習する簡単な方法であるMIREADを提案する。
私たちは、2000以上のジャーナルクラスで50万以上のPubMedとarXivの抽象クラスでMIREADをトレーニングします。
論文 参考訳(メタデータ) (2023-05-07T03:29:55Z) - Modeling Information Change in Science Communication with Semantically
Matched Paraphrases [50.67030449927206]
SPICEDは、情報変化の度合いに注釈を付けた科学的な発見の最初のパラフレーズデータセットである。
SPICEDには、ニュース記事、ソーシャルメディアの議論、オリジナル論文の全文から抽出された6000の科学的発見ペアが含まれている。
SPICEDで訓練されたモデルは、実世界の科学的主張の事実チェックのための証拠検索において下流のパフォーマンスを改善する。
論文 参考訳(メタデータ) (2022-10-24T07:44:38Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - Contemporary Research Trends in Response Robotics [0.0]
本稿では,文献の技術的内容,統計,意味を文献学的観点から分析する。
本研究の目的は, 応答ロボット研究のグローバルな進展を調査し, 現代の傾向を明らかにすることである。
論文 参考訳(メタデータ) (2021-04-28T05:35:45Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
本稿では,論文のコントリビューションと作業状況について,個別の要約を生成するために,論文要約のアンタングル化という新たなタスクを導入する。
本稿では,学術論文のS2ORCコーパスを拡張し,コントリビューション・コントリビューション・コントリビューション・レファレンス・ラベルを付加する。
本稿では, 生成した出力の関連性, 新規性, 絡み合いを報告する総合的自動評価プロトコルを提案する。
論文 参考訳(メタデータ) (2020-11-06T02:23:01Z) - Topic Space Trajectories: A case study on machine learning literature [0.0]
本稿では,研究トピックの包括的追跡を可能にする構造であるトピック空間トラジェクトリを提案する。
我々は,32の出版会場から50年間の機械学習研究を対象とする出版コーパスへのアプローチの適用性を示した。
本手法は,論文分類,今後の研究課題の予測,未発表の論文提出のための会議や雑誌の掲載を推奨するために利用することができる。
論文 参考訳(メタデータ) (2020-10-23T10:53:42Z) - GASP! Generating Abstracts of Scientific Papers from Abstracts of Cited
Papers [9.472227971923672]
本稿では,引用論文の要約(GASP)をテキスト・トゥ・テキスト・タスクとして,科学論文の要約を生成するという,新しい,科学的かつ哲学的な課題を紹介する。
論文 参考訳(メタデータ) (2020-02-28T14:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。