論文の概要: Impact of Data Quality on Deep Neural Network Training
- arxiv url: http://arxiv.org/abs/2002.03732v1
- Date: Mon, 20 Jan 2020 04:09:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 05:14:35.541641
- Title: Impact of Data Quality on Deep Neural Network Training
- Title(参考訳): ディープニューラルネットワークトレーニングにおけるデータ品質の影響
- Authors: Subrata Goswami
- Abstract要約: 良質なデータと見なされるものについては、多くの情報がある。
単純な変化が平均精度(mAP)にどのように影響するかを論文に示す。
- 参考スコア(独自算出の注目度): 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well known that data is critical for training neural networks. Lot have
been written about quantities of data required to train networks well. However,
there is not much publications on how data quality effects convergence of such
networks. There is dearth of information on what is considered good data ( for
the task ). This empirical experimental study explores some impacts of data
quality. Specific results are shown in the paper how simple changes can have
impact on Mean Average Precision (mAP).
- Abstract(参考訳): データがニューラルネットワークのトレーニングに重要であることはよく知られている。
ネットワークのトレーニングに十分な量のデータについて書かれています。
しかし、そのようなネットワークがデータ品質に与える影響についてはあまり発表されていない。
優れたデータと見なされるもの(タスクのために)に関する情報が不足している。
この実証実験では、データ品質の影響について調べる。
論文では、単純な変更が平均精度(mAP)にどのように影響するかを示す。
関連論文リスト
- Research and Implementation of Data Enhancement Techniques for Graph Neural Networks [10.575426305555538]
実用工学の応用では、より多くのデータが得られない状況や、データを取得するコストが高すぎる状況によって、いくつかのデータが影響を受ける。
本稿では、まず、グラフニューラルネットワークのデータ強化技術の要点を解析し、同時にグラフニューラルネットワークの奥行きの合成を紹介する。
論文 参考訳(メタデータ) (2024-06-18T14:07:38Z) - Application of quantum neural network model to a multivariate regression
problem [0.0]
本研究では,トレーニングデータのサイズが一般化性能に及ぼす影響について検討した。
その結果,トレーニングデータのサイズが小さい場合,QNNは特に有効であることが示唆された。
論文 参考訳(メタデータ) (2023-10-19T08:10:12Z) - A Pretrainer's Guide to Training Data: Measuring the Effects of Data
Age, Domain Coverage, Quality, & Toxicity [84.6421260559093]
この研究は、テキスト事前学習に関する文書化されていない直観を検証、定量化、公開するための最大の実験である。
以上の結果から,トレーニングデータをフィルタリングする一大ソリューションが存在しないことが示唆された。
論文 参考訳(メタデータ) (2023-05-22T15:57:53Z) - The Effect of Data Dimensionality on Neural Network Prunability [28.845848452511955]
ニューラルネットワークのプルーナビリティに寄与する可能性のある入力データの特性について検討する。
画像、テキスト、音声などの高次元の入力データに対して、多様体仮説はこれらの高次元の入力が、かなり低い次元の多様体の上または近くにあることを示唆している。
論文 参考訳(メタデータ) (2022-12-01T05:33:25Z) - Do Deep Neural Networks Always Perform Better When Eating More Data? [82.6459747000664]
Identically Independent Distribution(IID)とOut of Distribution(OOD)による実験を設計する。
IID条件下では、情報の量は各サンプルの効果度、サンプルの寄与度、クラス間の差がクラス情報の量を決定する。
OOD条件下では、試料のクロスドメイン度が寄与を決定づけ、無関係元素によるバイアス適合はクロスドメインの重要な要素である。
論文 参考訳(メタデータ) (2022-05-30T15:40:33Z) - A Data-Centric Approach for Training Deep Neural Networks with Less Data [1.9014535120129343]
本稿では,データ中心AI(Data-Centric AI)コンペへの優勝申請を要約する。
小さなデータセットでトレーニング中に発生する課題について論じる。
本稿では,新しいデータポイントを合成するためのGANベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-10-07T16:41:52Z) - HYDRA: Hypergradient Data Relevance Analysis for Interpreting Deep
Neural Networks [51.143054943431665]
本稿では、深層ニューラルネットワーク(DNN)による予測をトレーニングデータの効果として解釈する高次データ関連分析(HYDRA)を提案する。
HYDRAは、トレーニング軌跡全体を通して、テストデータポイントに対するトレーニングデータの貢献を評価する。
さらに,HyDRAは,データのコントリビューションを正確に推定し,ノイズのあるデータラベルを検出することで,影響関数よりも優れていることを定量的に示す。
論文 参考訳(メタデータ) (2021-02-04T10:00:13Z) - Statistical model-based evaluation of neural networks [74.10854783437351]
ニューラルネットワーク(NN)の評価のための実験装置を開発する。
このセットアップは、NNs vis-a-vis minimum-mean-square-error (MMSE)パフォーマンス境界のベンチマークに役立つ。
これにより、トレーニングデータサイズ、データ次元、データ幾何学、ノイズ、トレーニング条件とテスト条件のミスマッチの影響をテストできます。
論文 参考訳(メタデータ) (2020-11-18T00:33:24Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
我々は,OODインスタンスを破棄するよりも,特定のOODインスタンスを検出・復号化することで,学習に肯定的な影響を及ぼすことを示す。
提案手法は,畳み込みニューラルネットワークの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-02-11T21:08:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。