論文の概要: Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment
- arxiv url: http://arxiv.org/abs/2002.03911v3
- Date: Fri, 18 Sep 2020 06:16:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 07:12:47.116232
- Title: Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment
- Title(参考訳): 帰納的局所表現アライメントを用いた大規模勾配自由深層学習
- Authors: Alexander Ororbia, Ankur Mali, Daniel Kifer, C. Lee Giles
- Abstract要約: 大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
- 参考スコア(独自算出の注目度): 84.57874289554839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training deep neural networks on large-scale datasets requires significant
hardware resources whose costs (even on cloud platforms) put them out of reach
of smaller organizations, groups, and individuals. Backpropagation, the
workhorse for training these networks, is an inherently sequential process that
is difficult to parallelize. Furthermore, it requires researchers to
continually develop various tricks, such as specialized weight initializations
and activation functions, in order to ensure a stable parameter optimization.
Our goal is to seek an effective, neuro-biologically-plausible alternative to
backprop that can be used to train deep networks. In this paper, we propose a
gradient-free learning procedure, recursive local representation alignment, for
training large-scale neural architectures. Experiments with residual networks
on CIFAR-10 and the large benchmark, ImageNet, show that our algorithm
generalizes as well as backprop while converging sooner due to weight updates
that are parallelizable and computationally less demanding. This is empirical
evidence that a backprop-free algorithm can scale up to larger datasets.
- Abstract(参考訳): 大規模なデータセットでディープニューラルネットワークをトレーニングするには、(クラウドプラットフォーム上でも)コストが小さい組織やグループ、個人の手が届かないような、大きなハードウェアリソースが必要です。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
さらに、安定なパラメータ最適化を保証するために、特別なウェイト初期化やアクティベーション関数などの様々なトリックを継続的に開発する必要がある。
私たちの目標は、ディープネットワークのトレーニングに使用できるバックプロップの、効果的で神経生物学的に賞賛に値する代替手段を探すことです。
本稿では,大規模ニューラルアーキテクチャのトレーニングのための勾配なし学習手法,再帰的局所表現アライメントを提案する。
CIFAR-10と大規模なベンチマークであるImageNetの残余ネットワークを用いた実験では、並列化可能で計算的に要求の少ない重み更新により、より早く収束しながらアルゴリズムが一般化される。
これはバックプロップフリーなアルゴリズムがより大きなデータセットにスケールアップできるという実証的な証拠である。
関連論文リスト
- Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns [1.1965844936801797]
畳み込みニューラルネットワーク(ConvNets)は、ローカルデバイスリソースに厳しい要求を課す。
本稿では,静的畳み込みフィルタを用いて効率的なConvNetアーキテクチャの設計を行う。
論文 参考訳(メタデータ) (2024-07-20T10:18:42Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - A Partial Regularization Method for Network Compression [0.0]
本稿では, モデル圧縮を高速に行うために, 完全正則化と言われる全てのパラメータをペナライズする元の形式ではなく, 部分正則化のアプローチを提案する。
実験結果から, ほぼすべての状況において, 走行時間の減少を観測することにより, 計算複雑性を低減できることが示唆された。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要な指標を改善するのに役立ちます。
論文 参考訳(メタデータ) (2020-09-03T00:38:27Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
従来の手法を補完する新しい意味データ拡張アルゴリズムを提案する。
提案手法はディープネットワークが線形化特徴の学習に有効であるという興味深い性質に着想を得たものである。
提案した暗黙的セマンティックデータ拡張(ISDA)アルゴリズムは,新たなロバストCE損失を最小限に抑える。
論文 参考訳(メタデータ) (2020-07-21T00:32:44Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。