論文の概要: A Partial Regularization Method for Network Compression
- arxiv url: http://arxiv.org/abs/2009.01395v2
- Date: Fri, 4 Sep 2020 02:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 06:59:26.642899
- Title: A Partial Regularization Method for Network Compression
- Title(参考訳): ネットワーク圧縮のための部分正規化法
- Authors: E Zhenqian and Gao Weiguo
- Abstract要約: 本稿では, モデル圧縮を高速に行うために, 完全正則化と言われる全てのパラメータをペナライズする元の形式ではなく, 部分正則化のアプローチを提案する。
実験結果から, ほぼすべての状況において, 走行時間の減少を観測することにより, 計算複雑性を低減できることが示唆された。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要な指標を改善するのに役立ちます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks have achieved remarkable success relying on the
developing availability of GPUs and large-scale datasets with increasing
network depth and width. However, due to the expensive computation and
intensive memory, researchers have concentrated on designing compression
methods in order to make them practical for constrained platforms. In this
paper, we propose an approach of partial regularization rather than the
original form of penalizing all parameters, which is said to be full
regularization, to conduct model compression at a higher speed. It is
reasonable and feasible according to the existence of the permutation invariant
property of neural networks. Experimental results show that as we expected, the
computational complexity is reduced by observing less running time in almost
all situations. It should be owing to the fact that partial regularization
method invovles a lower number of elements for calculation. Surprisingly, it
helps to improve some important metrics such as regression fitting results and
classification accuracy in both training and test phases on multiple datasets,
telling us that the pruned models have better performance and generalization
ability. What's more, we analyze the results and draw a conclusion that an
optimal network structure must exist and depend on the input data.
- Abstract(参考訳): ディープニューラルネットワークは、ネットワークの深さと幅を増大させるGPUと大規模データセットの開発によって、大きな成功を収めている。
しかし、高価な計算と集中メモリのため、研究者は制約のあるプラットフォームに実用的な圧縮法の設計に集中してきた。
本稿では,完全正規化と呼ばれるすべてのパラメータを高い速度でモデル圧縮を行うためにペナライズする元の形式ではなく,部分正規化のアプローチを提案する。
ニューラルネットワークの置換不変性の存在により、合理的かつ実現可能である。
実験結果から, ほぼすべての状況において, 走行時間を減らすことにより, 計算複雑性を低減できることが示唆された。
これは、部分正規化法が計算のための要素の数を少なくするという事実によるはずである。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要なメトリクスを改善するのに役立ち、prunedモデルのパフォーマンスと一般化能力が向上したことを教えてくれます。
さらに、結果を分析し、最適なネットワーク構造が存在しなければならないという結論を導き、入力データに依存する。
関連論文リスト
- Split-Boost Neural Networks [1.1549572298362787]
本稿では,スプリットブートと呼ばれるフィードフォワードアーキテクチャの革新的なトレーニング戦略を提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避けることができる。
提案した戦略は、ベンチマーク医療保険設計問題内の実世界の(匿名化された)データセットでテストされる。
論文 参考訳(メタデータ) (2023-09-06T17:08:57Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Lost in Pruning: The Effects of Pruning Neural Networks beyond Test
Accuracy [42.15969584135412]
ニューラルネットワークプルーニングは、現代のネットワークの推論コストを削減するために使用される一般的な技術です。
試験精度のみを終了条件で使用するだけで、結果のモデルが正常に機能するかどうかを評価します。
刈り取られたネットワークは、効果的に未刈り込みモデルに近似するが、刈り取られたネットワークがコンメンシュレートのパフォーマンスを達成できるプルー比はタスクによって大きく異なる。
論文 参考訳(メタデータ) (2021-03-04T13:22:16Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。