論文の概要: Cloudifying the Curriculum with AWS
- arxiv url: http://arxiv.org/abs/2002.04020v1
- Date: Mon, 10 Feb 2020 18:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-04 01:34:38.512340
- Title: Cloudifying the Curriculum with AWS
- Title(参考訳): AWSによるカリキュラムのクラウド化
- Authors: Michael Soltys
- Abstract要約: クラウドは過去10年間でコンピューティングの主要なパラダイムとなり、コンピュータサイエンスのカリキュラムは、その現実を反映して更新されなければならない。
本稿では,Amazon Web Services(AWS)をコンピュータサイエンスやビジネス,コミュニケーション,数学などの分野に適用して,カリキュラムのクラウド化を実現するための簡単な方法を検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Cloud has become a principal paradigm of computing in the last ten years,
and Computer Science curricula must be updated to reflect that reality. This
paper examines simple ways to accomplish curriculum cloudification using Amazon
Web Services (AWS), for Computer Science and other disciplines such as
Business, Communication and Mathematics.
- Abstract(参考訳): この10年間でクラウドはコンピューティングの主要なパラダイムとなり、コンピュータサイエンスのカリキュラムはその現実を反映して更新されなければならない。
本稿では,Amazon Web Services(AWS)やコンピュータサイエンス,ビジネス,コミュニケーション,数学などの分野において,カリキュラムのクラウド化を実現するための簡単な方法を検討する。
関連論文リスト
- Teaching Cloud Infrastructure and Scalable Application Deployment in an Undergraduate Computer Science Program [2.8912542516745168]
学生は通常、技術キャリアの初期にクラウド抽象化と対話します。
クラウドエンジニアリングの基礎をしっかり理解せずにクラウドネイティブなアプリケーションを構築することは、クラウドプラットフォームに共通するコストとセキュリティの落とし穴に敏感な学生を悩ませる可能性がある。
私たちのコースでは、学生にIaC、コンテナ化、可観測性、サーバレスコンピューティング、継続的インテグレーションとデプロイメントといった、モダンでベストプラクティスのコンセプトとツールを体験するためのハンズオンの課題を数多く紹介しました。
論文 参考訳(メタデータ) (2024-10-01T19:49:19Z) - Computing in the Era of Large Generative Models: From Cloud-Native to
AI-Native [46.7766555589807]
クラウドネイティブ技術と高度な機械学習推論の両方のパワーを利用するAIネイティブコンピューティングパラダイムについて説明する。
これらの共同作業は、コスト・オブ・グッド・ソード(COGS)を最適化し、資源のアクセシビリティを向上させることを目的としている。
論文 参考訳(メタデータ) (2024-01-17T20:34:11Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
我々は,点クラウドデータにsim2realTransfer Learningを用いた産業アプリケーションケースを提案する。
合成ポイントクラウドデータの生成と処理方法に関する洞察を提供する。
この問題に対処するために、パッチベースの新しいアテンションネットワークも提案されている。
論文 参考訳(メタデータ) (2023-01-12T14:00:37Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Molecular Dynamics Simulations on Cloud Computing and Machine Learning
Platforms [0.8093262393618671]
我々は、科学計算アプリケーションの計算構造、設計、要求のパラダイムシフトを見る。
データ駆動型と機械学習のアプローチは、科学計算アプリケーションをサポートし、スピードアップし、拡張するために使用されています。
クラウドコンピューティングプラットフォームは、科学コンピューティングにますますアピールしている。
論文 参考訳(メタデータ) (2021-11-11T21:20:26Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - Data science and Machine learning in the Clouds: A Perspective for the
Future [0.0]
データ駆動科学(いわゆる第4の科学パラダイム)が研究とイノベーションの原動力となる。
この新たなパラダイムの下で処理される膨大なデータを、将来的には大きな懸念事項になるでしょう。
これらの計算のあらゆる面において、クラウドベースのサービスを強く要求する。
論文 参考訳(メタデータ) (2021-09-02T17:36:24Z) - Machine Learning Algorithms for Active Monitoring of High Performance
Computing as a Service (HPCaaS) Cloud Environments [0.0]
本稿では,HPCプラットフォームとして構成されたクラウドインフラストラクチャ上で動作するエンジニアリングアプリケーションの実用性について検討する。
この研究で考慮された工学的応用としては、ロスアラモス国立研究所が開発した放射線輸送コードMCNP6、オープンソースの計算流体力学コードOpenFOAM、素数分解に使用される一般数場シーブアルゴリズムCADONFSなどがある。
論文 参考訳(メタデータ) (2020-09-26T01:29:19Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。