論文の概要: Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly
- arxiv url: http://arxiv.org/abs/2301.05033v1
- Date: Thu, 12 Jan 2023 14:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 14:37:04.594012
- Title: Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly
- Title(参考訳): Sim2real Transfer Learning for Point Cloud Segmentation: an Industrial application case on autonomous disassembly
- Authors: Chengzhi Wu, Xuelei Bi, Julius Pfrommer, Alexander Cebulla, Simon
Mangold and J\"urgen Beyerer
- Abstract要約: 我々は,点クラウドデータにsim2realTransfer Learningを用いた産業アプリケーションケースを提案する。
合成ポイントクラウドデータの生成と処理方法に関する洞察を提供する。
この問題に対処するために、パッチベースの新しいアテンションネットワークも提案されている。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On robotics computer vision tasks, generating and annotating large amounts of
data from real-world for the use of deep learning-based approaches is often
difficult or even impossible. A common strategy for solving this problem is to
apply simulation-to-reality (sim2real) approaches with the help of simulated
scenes. While the majority of current robotics vision sim2real work focuses on
image data, we present an industrial application case that uses sim2real
transfer learning for point cloud data. We provide insights on how to generate
and process synthetic point cloud data in order to achieve better performance
when the learned model is transferred to real-world data. The issue of
imbalanced learning is investigated using multiple strategies. A novel
patch-based attention network is proposed additionally to tackle this problem.
- Abstract(参考訳): ロボットコンピュータビジョンタスクでは、ディープラーニングベースのアプローチを使用するために現実世界から大量のデータを生成し、注釈を付けることは、しばしば困難または不可能である。
この問題を解決する一般的な戦略は、シミュレーションシーンの助けを借りてシミュレーション・トゥ・リアル(sim2real)アプローチを適用することである。
現在のロボティクスのビジョンであるsim2realの大部分は画像データに焦点を当てているが、ここではsim2real transfer learningをポイントクラウドデータに使用する産業アプリケーションケースを提案する。
実世界のデータに学習モデルが転送される際に、より優れたパフォーマンスを達成するために、合成ポイントクラウドデータの生成および処理方法に関する洞察を提供する。
不均衡学習の課題を複数の戦略を用いて検討する。
この問題に対処するために、パッチベースの新しいアテンションネットワークも提案されている。
関連論文リスト
- Close the Sim2real Gap via Physically-based Structured Light Synthetic Data Simulation [16.69742672616517]
我々は、RGBと物理的にリアルな深度画像を生成する革新的な構造化光シミュレーションシステムを導入する。
ロボット産業の把握シナリオに適したRGBDデータセットを作成します。
sim2realのギャップを減らし、深層学習訓練を強化することにより、深層学習モデルを産業環境に適用しやすくする。
論文 参考訳(メタデータ) (2024-07-17T09:57:14Z) - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation [4.7246285569677315]
我々はSim-to-Real Dense Object Nets(SRDONs)という,オブジェクトを適切な表現で理解するだけでなく,シミュレートされた実データをピクセル整合性を持った統一された特徴空間にマップする,高密度オブジェクト記述子を提案する。
本研究では,事前学習したSRDONが実世界の訓練をゼロにした各種ロボット作業において,見えない物体や見えない視覚環境の性能を著しく向上させる実験を行った。
論文 参考訳(メタデータ) (2023-04-18T02:28:55Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
ロボット工学では、第一原理から導かれた力学モデルに基づくシミュレーションに基づいて、トレーニングデータを生成する方法がある。
ここでは、力学の複雑さの不均衡を利用して、より標本効率のよい学習を行う。
提案手法をいくつかの課題に対して検証し,既存の近視アルゴリズムと組み合わせた場合の学習改善を実証する。
論文 参考訳(メタデータ) (2023-03-03T21:55:04Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
本稿では,機能レベルと行動予測レベルの両方において,シミュレートと実際のアライメントを促進する自己監督的損失を提案する。
我々は、シミュレートとリアルで遠隔操作されたデモンストレーションを16.2時間しか使っていない10のシーンで80%の成功を達成した。
論文 参考訳(メタデータ) (2022-02-03T21:43:06Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
ディープラーニングがロボティクス研究のパラダイムシフトを引き起こし、大量のデータを必要とする方法が好まれている。
最先端のアプローチは、データ生成が高速かつ安価であるシミュレーションで学ぶ。
本稿では,ランダム化シミュレーションから学習する手法である「領域ランダム化」に焦点をあてる。
論文 参考訳(メタデータ) (2021-11-01T13:55:41Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
本研究では,観測結果から低次元状態空間への写像の学習を目的とした手法を提案する。
このマッピングは、環境とタスクの事前知識を組み込むために形作られた損失関数を用いて教師なしの学習で学習される。
本手法は,シミュレーション環境における移動ロボットナビゲーションタスクおよび実ロボット上でのテストを行う。
論文 参考訳(メタデータ) (2020-07-29T13:00:39Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
本稿では、画像翻訳におけるRL-scene整合性損失を導入し、画像に関連付けられたQ値に対して変換操作が不変であることを保証する。
RL-CycleGANは実世界のシミュレーションから実世界への変換による強化学習のための新しい手法である。
論文 参考訳(メタデータ) (2020-06-16T08:58:07Z) - SimAug: Learning Robust Representations from Simulation for Trajectory
Prediction [78.91518036949918]
本研究では,シミュレーション学習データの拡張により,ロバスト表現を学習する新しい手法を提案する。
我々は,SimAugが実世界の3つのベンチマークで有望な結果を得ることを示す。
論文 参考訳(メタデータ) (2020-04-04T21:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。