論文の概要: A review on outlier/anomaly detection in time series data
- arxiv url: http://arxiv.org/abs/2002.04236v1
- Date: Tue, 11 Feb 2020 07:25:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 01:28:49.783638
- Title: A review on outlier/anomaly detection in time series data
- Title(参考訳): 時系列データの異常/異常検出に関する一検討
- Authors: Ane Bl\'azquez-Garc\'ia, Angel Conde, Usue Mori, Jose A. Lozano
- Abstract要約: 本研究の目的は,時系列の文脈において,外乱検出技術に関する構造化された総合的な技術を提供することである。
この目的のために、外乱検出技術の特徴を特徴づける主な側面に基づいて分類を提示する。
- 参考スコア(独自算出の注目度): 0.4129225533930965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in technology have brought major breakthroughs in data
collection, enabling a large amount of data to be gathered over time and thus
generating time series. Mining this data has become an important task for
researchers and practitioners in the past few years, including the detection of
outliers or anomalies that may represent errors or events of interest. This
review aims to provide a structured and comprehensive state-of-the-art on
outlier detection techniques in the context of time series. To this end, a
taxonomy is presented based on the main aspects that characterize an outlier
detection technique.
- Abstract(参考訳): 最近の技術進歩は、データ収集に大きなブレークスルーをもたらし、大量のデータを時間とともに収集し、時系列を生成することを可能にする。
このデータのマイニングは、ここ数年で研究者や実践者にとって重要なタスクとなり、エラーや関心のある出来事を表す異常や異常の検出も行われている。
本研究の目的は,時系列の文脈における異常検出手法の構造化と包括性を提供することである。
この目的のために、外乱検出技術の特徴を特徴づける主な側面に基づいて分類を提示する。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - A Survey of Time Series Anomaly Detection Methods in the AIOps Domain [16.92261613814882]
インターネットベースのサービスは目覚ましい成功を収め、キーパフォーマンス指標(KPI)を大量に生成している。
このレビューは、AIOps(AI Ops for IT Operation)における時系列異常検出の総合的な概要を提供する。
近年の進歩に基づいて,実世界と次世代の時系列異常検出の今後の方向性を探究する。
論文 参考訳(メタデータ) (2023-08-01T09:13:57Z) - WePaMaDM-Outlier Detection: Weighted Outlier Detection using Pattern
Approaches for Mass Data Mining [0.6754597324022876]
外乱検出は、システム障害、不正行為、およびデータ内のパターンに関する重要な情報を明らかにすることができる。
本稿では、異なる質量データマイニング領域を持つWePaMaDM-Outlier Detectionを提案する。
また, 監視, 故障検出, 傾向解析において, 異常検出技術におけるデータモデリングの重要性についても検討した。
論文 参考訳(メタデータ) (2023-06-09T07:00:00Z) - Graph Anomaly Detection in Time Series: A Survey [7.127829790714167]
時系列異常検出は,様々な時系列アプリケーションにおいて重要な課題である。
最近のグラフベースのアプローチは、この分野の課題に取り組む上で、驚くべき進歩を遂げている。
論文 参考訳(メタデータ) (2023-01-31T19:48:01Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - A Comparative Review of Recent Few-Shot Object Detection Algorithms [0.0]
ラベル付きデータで新しいクラスに適応するために学習するオブジェクトの少ない検出は、命令的で長期にわたる問題である。
近年の研究では、ターゲットドメインを監督せずに追加データセットに暗黙の手がかりを使って、少数のショット検出器が堅牢なタスク概念を洗練させる方法が研究されている。
論文 参考訳(メタデータ) (2021-10-30T07:57:11Z) - Exathlon: A Benchmark for Explainable Anomaly Detection over Time Series [6.085662888748731]
本稿では,高次元時系列データを用いた説明可能な異常検出のための最初のベンチマークであるExathlonを提案する。
Exathlonは、Apache Sparkクラスタ上で大規模なストリーム処理ジョブを繰り返し実行する実際のデータトレースに基づいて構築されている。
各異常事例について、根本原因区間の接地真理ラベルと、延長効果区間の接地真理ラベルとを設ける。
論文 参考訳(メタデータ) (2020-10-10T19:31:22Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。