論文の概要: ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning
- arxiv url: http://arxiv.org/abs/2002.04326v3
- Date: Sat, 22 Aug 2020 07:14:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 01:00:47.596465
- Title: ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning
- Title(参考訳): ReClor: 論理的推論を必要とする要約データセット
- Authors: Weihao Yu, Zihang Jiang, Yanfei Dong, Jiashi Feng
- Abstract要約: 標準化された大学院受験試験から抽出した論理的推論(ReClor)を必要とする新たな読解データセットを提案する。
本稿では、偏りのあるデータポイントを識別し、それらをEASY集合と残りをHARD集合に分離することを提案する。
実験結果によると、最先端のモデルでは、データセットに含まれるバイアスをEASYセット上で高精度にキャプチャする能力に優れていた。
しかし、彼らはランダムな推測に近い性能のHARDセットに苦慮しており、現在のモデルの論理的推論能力を本質的に向上させるためには、より多くの研究が必要であることを示している。
- 参考スコア(独自算出の注目度): 85.33459673197149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent powerful pre-trained language models have achieved remarkable
performance on most of the popular datasets for reading comprehension. It is
time to introduce more challenging datasets to push the development of this
field towards more comprehensive reasoning of text. In this paper, we introduce
a new Reading Comprehension dataset requiring logical reasoning (ReClor)
extracted from standardized graduate admission examinations. As earlier studies
suggest, human-annotated datasets usually contain biases, which are often
exploited by models to achieve high accuracy without truly understanding the
text. In order to comprehensively evaluate the logical reasoning ability of
models on ReClor, we propose to identify biased data points and separate them
into EASY set while the rest as HARD set. Empirical results show that
state-of-the-art models have an outstanding ability to capture biases contained
in the dataset with high accuracy on EASY set. However, they struggle on HARD
set with poor performance near that of random guess, indicating more research
is needed to essentially enhance the logical reasoning ability of current
models.
- Abstract(参考訳): 最近の強力な事前学習型言語モデルは、理解を読み取るための一般的なデータセットのほとんどで顕著なパフォーマンスを実現している。
この分野の開発をテキストのより包括的な推論へと進めるために、より困難なデータセットを導入する時が来た。
本稿では,標準化された大学院入学試験から抽出した論理推論(reclor)を必要とする新しい読解データセットを提案する。
以前の研究が示唆しているように、人間の注釈付きデータセットは通常バイアスを含んでおり、しばしばモデルがテキストを真に理解せずに高い精度を達成するために活用する。
本稿では,ReClor 上でのモデルの論理的推論能力を総合的に評価するために,偏りのあるデータ点を同定し,それを EASY 集合に分割し,残りを HARD 集合とする手法を提案する。
実験結果によると、最先端のモデルでは、データセットに含まれるバイアスをEASYセット上で高精度にキャプチャする能力に優れていた。
しかし、ランダムな推測に近い性能の悪いハードセットに苦慮しており、現在のモデルの論理的推論能力を高めるために、さらなる研究が必要であることを示している。
関連論文リスト
- Numerical Literals in Link Prediction: A Critical Examination of Models and Datasets [2.5999037208435705]
数値リテラルを組み込んだリンク予測モデルは、既存のベンチマークデータセットに対してわずかに改善されている。
モデルが数値リテラルを使用するのに実際に優れているのか、あるいはグラフ構造を利用するのに優れているのかは、不明である。
本稿では,数値リテラルを組み込んだLPモデルの評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T17:55:33Z) - Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data [89.2410799619405]
実世界のデータを用いた統計的および因果推論において,大規模言語モデルの能力を評価するために,データベンチマークを用いた定量的推論を導入する。
このベンチマークは、教科書、オンライン学習教材、学術論文のデータシートを伴う411の質問のデータセットで構成されている。
データとテキストに対するモデルの量的推論能力を比較するために、ベンチマークを290のテキストのみの質問、すなわちQRTextで強化する。
論文 参考訳(メタデータ) (2024-02-27T16:15:03Z) - Fighting Bias with Bias: Promoting Model Robustness by Amplifying
Dataset Biases [5.997909991352044]
最近の研究は、トレーニングセットからバイアスのあるサンプルをフィルタリングすることで、頑健でバイアスのないモデルを開発することを試みた。
このようなフィルタリングは、バイアスを克服するモデルの真の能力を曖昧にする可能性がある、と私たちは主張する。
バイアス増幅トレーニングセットとバイアス防止テストセットで定義された評価フレームワークを導入する。
論文 参考訳(メタデータ) (2023-05-30T10:10:42Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
本稿では,証明可能な推論能力を備えた複雑なクエリを用いたエンドツーエンド学習を支援するニューラルシンボリック手法を提案する。
これまでに検討されていない10種類の新しいクエリを含む新しいデータセットを開発する。
提案手法は,新しいデータセットにおいて先行手法を著しく上回り,既存データセットにおける先行手法を同時に上回っている。
論文 参考訳(メタデータ) (2023-04-14T11:35:35Z) - A Large Scale Search Dataset for Unbiased Learning to Rank [51.97967284268577]
我々は、非バイアス学習のためのBaidu-ULTRデータセットをランク付けする。
ランダムに12億の検索セッションと7,008のエキスパートアノテートクエリをサンプリングする。
1)本来のセマンティックな特徴と,使用が容易な事前学習言語モデル,(2)位置,表示高さ,抽象表現などの十分な表示情報,(3)居住時間のような検索結果ページ(SERP)に対するリッチなユーザフィードバックを提供する。
論文 参考訳(メタデータ) (2022-07-07T02:37:25Z) - Interpretable Research Replication Prediction via Variational Contextual
Consistency Sentence Masking [14.50690911709558]
研究レプリケーション予測(Research Replication Prediction、RRP)は、公表された研究結果が複製可能かどうかを予測するタスクである。
本研究では,キー文を自動的に抽出するVCCSM法を提案する。
欧州人権条約 (ECHR) のデータセットとともに, RRP に関する実験の結果, VCCSM は長い文書分類作業において, モデル解釈可能性を向上させることができることを示した。
論文 参考訳(メタデータ) (2022-03-28T03:27:13Z) - Annotating and Modeling Fine-grained Factuality in Summarization [36.88018450067003]
実際に使用する上での大きな障壁は、入力に忠実ではなく、事実的誤りを含む要約を出力する確率である。
要約の事実的誤りを識別するために,学習モデルのための合成データと人間ラベルデータの両方を探索する。
我々は,学習データ中の非実写トークンを識別することにより,より実写的なXSum要約モデルのトレーニングを可能にすることを示す。
論文 参考訳(メタデータ) (2021-04-09T11:20:44Z) - Improving Commonsense Causal Reasoning by Adversarial Training and Data
Augmentation [14.92157586545743]
本稿では,因果推論の領域において,モデルをより堅牢にするための多くの手法を提案する。
少数の追加生成データポイントがなくても、パフォーマンスと両方のデータセットの統計的に有意な改善を示します。
論文 参考訳(メタデータ) (2021-01-13T09:55:29Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
データセットバイアスに対するロバスト性を改善する既存のアプローチは、主にトレーニング目標の変更に焦点を当てている。
本稿では,学習データ中の入力文に対応する述語句構造を付加することを提案する。
特定のバイアスを対象とせずに、文の増大は、複数のバイアスに対してトランスフォーマーモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2020-10-23T16:22:05Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
本稿では、語彙的データセットバイアスに対するモデル強化のための、データレベルとモデルレベルのデバイアス法の両方について検討する。
まず、データ拡張と拡張によってデータセットをデバイアスするが、この方法でモデルバイアスを完全に除去することはできないことを示す。
第2のアプローチでは、バーオブワードのサブモデルを使用して、バイアスを悪用する可能性のある機能をキャプチャし、元のモデルがこれらのバイアス付き機能を学ぶのを防ぐ。
論文 参考訳(メタデータ) (2020-05-10T17:56:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。