論文の概要: Robustness of Bayesian Neural Networks to Gradient-Based Attacks
- arxiv url: http://arxiv.org/abs/2002.04359v3
- Date: Wed, 24 Jun 2020 10:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 01:38:38.541454
- Title: Robustness of Bayesian Neural Networks to Gradient-Based Attacks
- Title(参考訳): 勾配に基づく攻撃に対するベイズニューラルネットワークのロバスト性
- Authors: Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane, Luca
Bortolussi, Guido Sanguinetti
- Abstract要約: 敵対的攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
データ分布の縮退の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
以上の結果から,BNN後頭葉は勾配に基づく対向攻撃に対して頑健であることが示唆された。
- 参考スコア(独自算出の注目度): 9.966113038850946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vulnerability to adversarial attacks is one of the principal hurdles to the
adoption of deep learning in safety-critical applications. Despite significant
efforts, both practical and theoretical, the problem remains open. In this
paper, we analyse the geometry of adversarial attacks in the large-data,
overparametrized limit for Bayesian Neural Networks (BNNs). We show that, in
the limit, vulnerability to gradient-based attacks arises as a result of
degeneracy in the data distribution, i.e., when the data lies on a
lower-dimensional submanifold of the ambient space. As a direct consequence, we
demonstrate that in the limit BNN posteriors are robust to gradient-based
adversarial attacks. Experimental results on the MNIST and Fashion MNIST
datasets with BNNs trained with Hamiltonian Monte Carlo and Variational
Inference support this line of argument, showing that BNNs can display both
high accuracy and robustness to gradient based adversarial attacks.
- Abstract(参考訳): 敵攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
実用的かつ理論的な大きな努力にもかかわらず、この問題は未解決のままである。
本稿では,ベイズ型ニューラルネットワーク(bnns)の大規模・過パラメータ限界における逆攻撃の幾何解析を行う。
この限界において、データ分布の縮退(つまり、データが周囲空間の低次元部分多様体上にある場合)の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
直接的な結果として,BNN後部は勾配に基づく攻撃に対して頑健であることを示す。
ハミルトンモンテカルロと変分推論で訓練されたBNNを用いたMNISTおよびFashion MNISTデータセットの実験結果は、BNNが勾配に基づく敵攻撃に対して高い精度と堅牢性を示すことを示す。
関連論文リスト
- Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
グラフニューラルネットワーク(GNN)は、特定のグラフのノード特徴をターゲットとして、バックドアを含む有毒な攻撃に対して認証する。
コンボリューションベースのGNNとPageRankベースのGNNの最悪の動作におけるグラフ構造の役割とその接続性に関する基本的な知見を提供する。
論文 参考訳(メタデータ) (2024-07-15T16:12:51Z) - Explainable AI Security: Exploring Robustness of Graph Neural Networks to Adversarial Attacks [14.89001880258583]
グラフニューラルネットワーク(GNN)は非常に成功したが、最近の研究では、GNNは敵の攻撃に弱いことが示されている。
本稿では,グラフデータパターン,モデル固有因子,および敵対例の転送可能性を考慮することで,GNNの対角的ロバスト性について検討する。
この作業は、GNNの脆弱性を照らし、堅牢なGNNを設計するための多くの有望な道を開く。
論文 参考訳(メタデータ) (2024-06-20T01:24:18Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
ディープニューラルネットワーク(DNN)は、分類、認識、予測など、さまざまなアプリケーションで注目を集めている。
従来のDNNの基本的属性は、入力データの修正に対する脆弱性である。
本研究の目的は、敵攻撃に対する現代の防御機構の有効性と一般化に挑戦することである。
論文 参考訳(メタデータ) (2023-08-12T05:21:34Z) - What Does the Gradient Tell When Attacking the Graph Structure [44.44204591087092]
本稿では,GNNのメッセージパッシング機構により,攻撃者がクラス間エッジを増大させる傾向があることを示す。
異なるノードを接続することで、攻撃者はより効果的にノード機能を破損させ、そのような攻撃をより有利にする。
本研究では,攻撃効率と非受容性のバランスを保ち,より優れた非受容性を実現するために攻撃効率を犠牲にする,革新的な攻撃損失を提案する。
論文 参考訳(メタデータ) (2022-08-26T15:45:20Z) - On the Robustness of Bayesian Neural Networks to Adversarial Attacks [11.277163381331137]
敵対的攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
データ分布の縮退の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
BNN後部分布に対する損失の予測勾配は、後部からサンプリングされた各ニューラルネットワークが勾配に基づく攻撃に対して脆弱である場合でも消滅していることを示す。
論文 参考訳(メタデータ) (2022-07-13T12:27:38Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
ベイジアンネットワーク(BNN)は、ランダム性を組み込むことで、敵の攻撃を扱うのに頑丈で適している。
我々はベイズ的推論(つまり変分ベイズ)をDenseNetアーキテクチャに融合させることで、BNN-DenseNetと呼ばれるBNNモデルを作成する。
逆向きに訓練されたBNNは、ほとんどの実験で非ベイズ的で逆向きに訓練されたBNNよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T16:14:44Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,ネットワーク幅と深さがDNNの強靭性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2021-10-07T23:13:33Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Towards More Practical Adversarial Attacks on Graph Neural Networks [14.78539966828287]
グラフニューラルネットワーク(GNN)に対するブラックボックス攻撃を,新規で現実的な制約の下で検討する。
我々は,GNNモデルの構造的帰納バイアスが,この種の攻撃に有効であることを示す。
論文 参考訳(メタデータ) (2020-06-09T05:27:39Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
敵攻撃は入力に対する小さな摂動によって容易に騙される。
グラフニューラルネットワーク(GNN)がこの脆弱性を継承することを実証している。
本調査では,既存の攻撃と防御を分類し,対応する最先端の手法を概観する。
論文 参考訳(メタデータ) (2020-03-02T04:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。