論文の概要: Explainable AI Security: Exploring Robustness of Graph Neural Networks to Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2406.13920v1
- Date: Thu, 20 Jun 2024 01:24:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:46:37.882504
- Title: Explainable AI Security: Exploring Robustness of Graph Neural Networks to Adversarial Attacks
- Title(参考訳): 説明可能なAIセキュリティ: 敵攻撃に対するグラフニューラルネットワークのロバスト性を探る
- Authors: Tao Wu, Canyixing Cui, Xingping Xian, Shaojie Qiao, Chao Wang, Lin Yuan, Shui Yu,
- Abstract要約: グラフニューラルネットワーク(GNN)は非常に成功したが、最近の研究では、GNNは敵の攻撃に弱いことが示されている。
本稿では,グラフデータパターン,モデル固有因子,および敵対例の転送可能性を考慮することで,GNNの対角的ロバスト性について検討する。
この作業は、GNNの脆弱性を照らし、堅牢なGNNを設計するための多くの有望な道を開く。
- 参考スコア(独自算出の注目度): 14.89001880258583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have achieved tremendous success, but recent studies have shown that GNNs are vulnerable to adversarial attacks, which significantly hinders their use in safety-critical scenarios. Therefore, the design of robust GNNs has attracted increasing attention. However, existing research has mainly been conducted via experimental trial and error, and thus far, there remains a lack of a comprehensive understanding of the vulnerability of GNNs. To address this limitation, we systematically investigate the adversarial robustness of GNNs by considering graph data patterns, model-specific factors, and the transferability of adversarial examples. Through extensive experiments, a set of principled guidelines is obtained for improving the adversarial robustness of GNNs, for example: (i) rather than highly regular graphs, the training graph data with diverse structural patterns is crucial for model robustness, which is consistent with the concept of adversarial training; (ii) the large model capacity of GNNs with sufficient training data has a positive effect on model robustness, and only a small percentage of neurons in GNNs are affected by adversarial attacks; (iii) adversarial transfer is not symmetric and the adversarial examples produced by the small-capacity model have stronger adversarial transferability. This work illuminates the vulnerabilities of GNNs and opens many promising avenues for designing robust GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は大きな成功を収めていますが、近年の研究により、GNNは敵の攻撃に弱いことが示されています。
そのため、堅牢なGNNの設計が注目されている。
しかし、既存の研究は主に実験と誤りによって行われており、これまでのところ、GNNの脆弱性に関する包括的理解の欠如が残っている。
この制限に対処するために、グラフデータパターン、モデル固有の要因、および敵の例の転送可能性を考慮することにより、GNNの対向ロバスト性について体系的に検討する。
広範な実験を通じて、例えば、GNNの対向的堅牢性を改善するための一連の原則化されたガイドラインが得られた。
(i) 高度に正規なグラフではなく、多様な構造パターンを持つグラフデータのトレーニングは、逆トレーニングの概念と整合性のあるモデルロバストネスに不可欠である。
(II)十分なトレーニングデータを持つGNNのモデル容量はモデル堅牢性に正の影響を及ぼし、GNNのニューロンのごく一部が敵の攻撃によって影響を受ける。
三 逆転は対称ではなく、小容量モデルによる逆転の例は、より強い逆転率を持つ。
この作業は、GNNの脆弱性を照らし、堅牢なGNNを設計するための多くの有望な道を開く。
関連論文リスト
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
グラフニューラルネットワーク(GNN)は,さまざまな実世界のシナリオに対して,有能なグラフ学習手法として登場した。
パフォーマンス指向のGNNは、敵の攻撃に対する脆弱性のような潜在的な副作用を示す。
こうした意図しない害を避けるためには、信頼度に特徴付けられる有能なGNNを構築する必要がある。
論文 参考訳(メタデータ) (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
グラフニューラルネットワーク(GNN)は近年,急速な発展を遂げている。
GNNは個人情報をリークしたり、敵対的攻撃に弱いり、トレーニングデータから社会的バイアスを継承したり、拡大したりすることができる。
本稿では、プライバシー、堅牢性、公正性、説明可能性の計算面におけるGNNの包括的調査を行う。
論文 参考訳(メタデータ) (2022-04-18T21:41:07Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
敵の訓練は、敵の攻撃に対するモデルの堅牢性を改善するために広く実証されてきた。
グラフ解析問題におけるGNNの一般化能力をどのように改善するかは、まだ不明である。
我々は、重みと特徴量の観点から共振器摂動(CAP)最適化問題を構築し、重みと特徴の損失を交互に平らにする交互対振器摂動アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-28T02:28:13Z) - Adversarial Attack on Graph Neural Networks as An Influence Maximization
Problem [12.88476464580968]
グラフニューラルネットワーク(GNN)が注目されている。
敵の攻撃下でのGNNの堅牢性を理解する必要がある。
論文 参考訳(メタデータ) (2021-06-21T00:47:44Z) - Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning
Attacks [43.60973654460398]
グラフニューラルネットワーク(GNN)は、ニューラルネットワークからグラフ構造化データへの一般化である。
GNNは敵の攻撃に弱い、すなわち、構造に対する小さな摂動は、非自明な性能劣化を引き起こす可能性がある。
本稿では,GNNモデルの堅牢性向上を目的とした不確実性マッチングGNN(UM-GNN)を提案する。
論文 参考訳(メタデータ) (2020-09-30T05:29:42Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。