論文の概要: Background Matting
- arxiv url: http://arxiv.org/abs/2002.04433v1
- Date: Tue, 11 Feb 2020 14:46:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 02:21:55.805512
- Title: Background Matting
- Title(参考訳): 背景マッティング
- Authors: Hossein Javidnia, Fran\c{c}ois Piti\'e
- Abstract要約: 本稿では,アルファ計算における背景情報とトリマップの利用効果について検討する。
この目的を達成するため、AlphaGanが採用され、背景情報を追加入力チャネルとして処理するように変更される。
- 参考スコア(独自算出の注目度): 0.40611352512781856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current state of the art alpha matting methods mainly rely on the trimap
as the secondary and only guidance to estimate alpha. This paper investigates
the effects of utilising the background information as well as trimap in the
process of alpha calculation. To achieve this goal, a state of the art method,
AlphaGan is adopted and modified to process the background information as an
extra input channel. Extensive experiments are performed to analyse the effect
of the background information in image and video matting such as training with
mildly and heavily distorted backgrounds. Based on the quantitative evaluations
performed on Adobe Composition-1k dataset, the proposed pipeline significantly
outperforms the state of the art methods using AlphaMatting benchmark metrics.
- Abstract(参考訳): art alpha matting法の現状は、主に、アルファを推定するための二次的かつ唯一のガイダンスとしてtrimapに依存している。
本稿では,アルファ計算の過程における背景情報とトリマップの活用効果について検討する。
この目的を達成するため、AlphaGanが採用され、背景情報を追加入力チャネルとして処理するように変更される。
画像とビデオのマッチングにおける背景情報の影響を分析するために, 微弱で歪んだ背景のトレーニングなど, 広範囲にわたる実験を行った。
Adobe composition-1kデータセットで行った定量的評価に基づいて、提案したパイプラインはAlphaMattingベンチマークメトリクスを使用して、アートメソッドの状態を著しく上回る。
関連論文リスト
- DiffusionMat: Alpha Matting as Sequential Refinement Learning [87.76572845943929]
DiffusionMatは、粗いアルファマットから洗練されたアルファマットへの移行に拡散モデルを利用する画像マッチングフレームワークである。
補正モジュールは、各復調ステップで出力を調整し、最終的な結果が入力画像の構造と一致していることを保証する。
その結果,DiffusionMatは既存の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-11-22T17:16:44Z) - Disentangled Pre-training for Image Matting [74.10407744483526]
画像マッチングは、深層モデルのトレーニングをサポートするために高品質なピクセルレベルの人間のアノテーションを必要とする。
本研究では、無限個のデータを活用する自己教師付き事前学習手法を提案し、マッチング性能を向上する。
論文 参考訳(メタデータ) (2023-04-03T08:16:02Z) - Boosting Robustness of Image Matting with Context Assembling and Strong
Data Augmentation [83.31087402305306]
トリマップへのロバストさと、異なる領域の画像への一般化はまだ未定である。
マルチレベルコンテキストアッセンブルと強力なデータ拡張により高ロバスト性(RMat)を実現する画像マッチング手法を提案する。
論文 参考訳(メタデータ) (2022-01-18T11:45:17Z) - Long-Range Feature Propagating for Natural Image Matting [93.20589403997505]
自然画像マッチングは、トリマップ内の未知領域のアルファ値を推定する。
近年、深層学習に基づく手法は、その類似性に応じて、既知の領域から未知領域へのアルファ値の伝播を行っている。
本稿では,Alpha matte 推定のために受信フィールド外における長距離コンテキスト特徴を学習する Long-Range Feature Propagating Network (LFPNet) を提案する。
論文 参考訳(メタデータ) (2021-09-25T01:17:17Z) - Deep Video Matting via Spatio-Temporal Alignment and Aggregation [63.6870051909004]
新たな集計機能モジュール(STFAM)を用いた深層学習型ビデオマッチングフレームワークを提案する。
フレーム毎のトリマップアノテーションを排除するため、軽量なインタラクティブなトリマップ伝搬ネットワークも導入されている。
私達のフレームワークは従来のビデオ マットおよび深いイメージのマットの方法よりかなり優秀です。
論文 参考訳(メタデータ) (2021-04-22T17:42:08Z) - Semantic Image Matting [75.21022252141474]
交配領域のフレームワークセマンティクス分類に組み込むことで、より良いアルファマットを得る方法を紹介します。
具体的には,20種類のマットングパターンを検討し,学習し,従来の三角マップを意味的三角マップに拡張する提案を行う。
複数のベンチマーク実験により,本手法は他の手法よりも優れており,最も競争力のある最先端性能を実現していることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-16T16:21:02Z) - Fast Multi-Level Foreground Estimation [0.4588028371034407]
得られたアルファマットは、合成画像の色にどれだけの額のフォアグラウンドと背景色が寄与するかをピクセル単位で記述する。
文献のほとんどの方法はアルファマットの推定に重点を置いているが、入力された画像とそのアルファマットが与えられた前景の色を推定する過程は無視されることが多い。
アルファマットを用いた前景推定手法を提案する。
論文 参考訳(メタデータ) (2020-06-26T13:16:13Z) - Combining Deep Learning with Geometric Features for Image based
Localization in the Gastrointestinal Tract [8.510792628268824]
そこで本研究では,Deep Learning法と従来の特徴量に基づく手法を併用して,小さなトレーニングデータを用いたより優れたローカライゼーションを実現する手法を提案する。
本手法は, セグメンテッドトレーニング画像セットにおいて, 最寄りのゾーンに数発の分類を行うために, シームズネットワーク構造を導入することにより, 両世界の長所をフル活用する。
精度は28.94% (Position) と10.97% (Orientation) で改善されている。
論文 参考訳(メタデータ) (2020-05-11T23:04:00Z) - $F$, $B$, Alpha Matting [0.0]
我々は,前景や背景の色を予測するために,アルファ・マッティング・ネットワークの低コストな修正を提案する。
提案手法は, アルファマットと合成色質のためのAdobe composition-1kデータセット上で, アートパフォーマンスの状態を達成している。
論文 参考訳(メタデータ) (2020-03-17T13:27:51Z) - Natural Image Matting via Guided Contextual Attention [18.034160025888056]
本研究は,自然画像マッチングのための新しいエンド・ツー・エンド・アプローチを,ガイド付きコンテキストアテンションモジュールで開発する。
提案手法は親和性に基づく手法の情報フローを模倣し,深層ニューラルネットワークで学習した豊富な特徴を同時に利用することができる。
composition-1k test set と alphamatting.com ベンチマークデータセットの実験結果から,本手法は自然な画像マッチングにおける最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-01-13T05:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。