論文の概要: HRINet: Alternative Supervision Network for High-resolution CT image
Interpolation
- arxiv url: http://arxiv.org/abs/2002.04455v2
- Date: Sun, 7 Jun 2020 19:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 02:41:16.276457
- Title: HRINet: Alternative Supervision Network for High-resolution CT image
Interpolation
- Title(参考訳): HRINet:高分解能CT画像補間のための代替スーパービジョンネットワーク
- Authors: Jiawei Li, Jae Chul Koh, Won-Sook Lee
- Abstract要約: 我々は,高分解能CT画像の生成を目的とした,新しいネットワークであるHigh Resolution Interpolation Network (HRINet)を提案する。
本稿では,ACAI と GAN のアイデアを組み合わせて,教師なしと教師なしのトレーニングを適用して,代替監督手法の新たなアイデアを提案する。
実験の結果,2562,5122画像の定量的,定性的に大きな改善が見られた。
- 参考スコア(独自算出の注目度): 3.7966959476339035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image interpolation in medical area is of high importance as most 3D
biomedical volume images are sampled where the distance between consecutive
slices significantly greater than the in-plane pixel size due to radiation dose
or scanning time. Image interpolation creates a number of new slices between
known slices in order to obtain an isotropic volume image. The results can be
used for the higher quality of 3D reconstruction and visualization of human
body structures. Semantic interpolation on the manifold has been proved to be
very useful for smoothing image interpolation. Nevertheless, all previous
methods focused on low-resolution image interpolation, and most of them work
poorly on high-resolution image. We propose a novel network, High Resolution
Interpolation Network (HRINet), aiming at producing high-resolution CT image
interpolations. We combine the idea of ACAI and GANs, and propose a novel idea
of alternative supervision method by applying supervised and unsupervised
training alternatively to raise the accuracy of human organ structures in CT
while keeping high quality. We compare an MSE based and a perceptual based loss
optimizing methods for high quality interpolation, and show the tradeoff
between the structural correctness and sharpness. Our experiments show the
great improvement on 256 2 and 5122 images quantitatively and qualitatively.
- Abstract(参考訳): 医用領域における画像補間は,放射線照射量や走査時間により,連続スライス間距離が平面内画素サイズよりも著しく大きくなるような3次元生体医学的ボリューム画像のサンプル化が重要視されている。
画像補間は、等方ボリューム画像を得るために、既知のスライス間で多数の新しいスライスを生成する。
この結果は、人間の身体構造の3次元再構築と可視化の高品質化に利用できる。
多様体上の意味的補間は、画像補間を平滑化するのに非常に有用であることが証明されている。
それにもかかわらず、以前の全ての手法は低解像度画像補間に焦点をあてており、そのほとんどは高解像度画像に対してうまく機能していない。
本稿では,高分解能CT画像の補間を実現するための新しいネットワークであるHigh Resolution Interpolation Network (HRINet)を提案する。
本稿では,ACAI と GAN のアイデアを組み合わせて,CT におけるヒト臓器構造の精度を向上し,高品質を維持しつつ,教師付き・教師なしの訓練を交互に適用することで,代替的な監督手法を提案する。
高品質補間のためのMSEベースと知覚に基づく損失最適化手法を比較し,構造的正しさと鋭さのトレードオフを示す。
実験の結果,2562,5122の画像の質的および質的改善が認められた。
関連論文リスト
- Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - Single-subject Multi-contrast MRI Super-resolution via Implicit Neural
Representations [9.683341998041634]
Inlicit Neural Representations (INR) は連続空間関数における相補的視点の2つの異なるコントラストを学習することを提案した。
我々のモデルは、3つのデータセットを用いた実験において、異なるコントラストのペア間で現実的な超解像を提供する。
論文 参考訳(メタデータ) (2023-03-27T10:18:42Z) - CLADE: Cycle Loss Augmented Degradation Enhancement for Unpaired
Super-Resolution of Anisotropic Medical Images [0.06597195879147556]
3次元画像(3D)は医学的応用で人気があるが、厚く低空間分解能のスライスを持つ異方性3Dボリュームはスキャン時間を短縮するために取得されることが多い。
深層学習(DL)は超解像再構成(SRR)により高分解能特徴を復元するソリューションを提供する
腹部MRIおよび腹部CTにおけるCLADEの有用性を示すとともに,低分解能ボリュームよりもCLADE画像の画質が有意に向上した。
論文 参考訳(メタデータ) (2023-03-21T13:19:51Z) - Mutual Attention-based Hybrid Dimensional Network for Multimodal Imaging
Computer-aided Diagnosis [4.657804635843888]
マルチモーダル3次元医用画像分類(MMNet)のための新しい相互注意型ハイブリッド次元ネットワークを提案する。
ハイブリッド次元ネットワークは2D CNNと3D畳み込みモジュールを統合し、より深くより情報的な特徴マップを生成する。
さらに,画像モダリティの異なる類似の立体視領域において,各領域の整合性を構築するために,ネットワーク内の相互注意フレームワークを設計する。
論文 参考訳(メタデータ) (2022-01-24T02:31:25Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Joint Semi-supervised 3D Super-Resolution and Segmentation with Mixed
Adversarial Gaussian Domain Adaptation [13.477290490742224]
医用画像の高解像度化は、画像の解像度を向上させることを目的としているが、従来は低解像度データセットの特徴に基づいて訓練されている。
本稿では,画像とそのラベルの同時超解像を行う半教師付きマルチタスク生成対向ネットワーク(Gemini-GAN)を提案する。
提案手法は, 成人1,331人, 成人205人のトランスナショナル多民族集団に対して広く評価された。
論文 参考訳(メタデータ) (2021-07-16T15:42:39Z) - SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks [9.201328999176402]
本稿では,GAN(Perceptual-tuned Generative Adversarial Network)を用いたSOUP-GANというフレームワークを提案する。
本モデルは,新しい3D SR技術として期待でき,臨床と研究の両方に応用できる可能性を示している。
論文 参考訳(メタデータ) (2021-06-04T16:59:23Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。