論文の概要: Multi-resolution Guided 3D GANs for Medical Image Translation
- arxiv url: http://arxiv.org/abs/2412.00575v1
- Date: Sat, 30 Nov 2024 20:11:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:42:49.234779
- Title: Multi-resolution Guided 3D GANs for Medical Image Translation
- Title(参考訳): 医用画像翻訳のためのマルチレゾリューションガイド3D GAN
- Authors: Juhyung Ha, Jong Sung Park, David Crandall, Eleftherios Garyfallidis, Xuhong Zhang,
- Abstract要約: 医用画像の3次元翻訳のための多分解能ガイド付きGAN(Generative Adrial Network)ベースのフレームワークを提案する。
本フレームワークでは,ジェネレータとして3次元マルチ解像度Dense-Attention UNet(3D-mDAUNet),識別器として3次元マルチ解像度UNetを使用する。
提案手法は,様々な画像モダリティ,身体領域,年齢群にまたがる画像品質評価(IQA)において,その堅牢性を示す有望な結果をもたらす。
- 参考スコア(独自算出の注目度): 6.299981733052469
- License:
- Abstract: Medical image translation is the process of converting from one imaging modality to another, in order to reduce the need for multiple image acquisitions from the same patient. This can enhance the efficiency of treatment by reducing the time, equipment, and labor needed. In this paper, we introduce a multi-resolution guided Generative Adversarial Network (GAN)-based framework for 3D medical image translation. Our framework uses a 3D multi-resolution Dense-Attention UNet (3D-mDAUNet) as the generator and a 3D multi-resolution UNet as the discriminator, optimized with a unique combination of loss functions including voxel-wise GAN loss and 2.5D perception loss. Our approach yields promising results in volumetric image quality assessment (IQA) across a variety of imaging modalities, body regions, and age groups, demonstrating its robustness. Furthermore, we propose a synthetic-to-real applicability assessment as an additional evaluation to assess the effectiveness of synthetic data in downstream applications such as segmentation. This comprehensive evaluation shows that our method produces synthetic medical images not only of high-quality but also potentially useful in clinical applications. Our code is available at github.com/juhha/3D-mADUNet.
- Abstract(参考訳): 医用画像翻訳は、同じ患者から複数の画像を取得する必要性を減らすために、ある画像モダリティから別の画像へ変換する過程である。
これにより、必要な時間、設備、労力を削減し、治療の効率を高めることができる。
本稿では,3次元医用画像翻訳のためのGAN(Generative Adversarial Network)をベースとしたマルチレゾリューション手法を提案する。
本フレームワークでは,ジェネレータとして3次元多解像度Dense-Attention UNet(3D-mDAUNet),判別器として3次元多解像度UNetを用い,ボクセルワイドGAN損失や2.5D知覚損失などの損失関数を一意に組み合わせて最適化した。
提案手法は,様々な画像モダリティ,身体領域,年齢群にまたがる画像品質評価(IQA)において,その堅牢性を示す有望な結果をもたらす。
さらに,セグメンテーションなどの下流アプリケーションにおける合成データの有効性を評価するために,合成から現実への適用性の評価法を提案する。
本手法は,高品質な医用画像だけでなく,臨床応用にも有用である可能性が示唆された。
私たちのコードはgithub.com/juhha/3D-mADUNetで利用可能です。
関連論文リスト
- QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - 3D Volumetric Super-Resolution in Radiology Using 3D RRDB-GAN [4.8698443014985715]
本研究では,放射線画像の3次元超解像のための3次元残留残差ブロックGAN(3D RRDB-GAN)を提案する。
3D RRDB-GANの重要な側面は2.5D Dense損失関数の統合である。
論文 参考訳(メタデータ) (2024-02-06T17:26:18Z) - Adaptive Latent Diffusion Model for 3D Medical Image to Image
Translation: Multi-modal Magnetic Resonance Imaging Study [4.3536336830666755]
医用画像解析において,マルチモーダル画像は包括的評価において重要な役割を担っている。
臨床実践では、スキャンコスト、スキャン時間制限、安全性考慮などの理由から、複数のモダリティを取得することは困難である。
本稿では,3次元医用画像のイメージ・ツー・イメージ翻訳において,パッチ・トリッピングを伴わない切り換え可能なブロックを利用するモデルを提案する。
論文 参考訳(メタデータ) (2023-11-01T03:22:57Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - CLADE: Cycle Loss Augmented Degradation Enhancement for Unpaired
Super-Resolution of Anisotropic Medical Images [0.06597195879147556]
3次元画像(3D)は医学的応用で人気があるが、厚く低空間分解能のスライスを持つ異方性3Dボリュームはスキャン時間を短縮するために取得されることが多い。
深層学習(DL)は超解像再構成(SRR)により高分解能特徴を復元するソリューションを提供する
腹部MRIおよび腹部CTにおけるCLADEの有用性を示すとともに,低分解能ボリュームよりもCLADE画像の画質が有意に向上した。
論文 参考訳(メタデータ) (2023-03-21T13:19:51Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks [9.201328999176402]
本稿では,GAN(Perceptual-tuned Generative Adversarial Network)を用いたSOUP-GANというフレームワークを提案する。
本モデルは,新しい3D SR技術として期待でき,臨床と研究の両方に応用できる可能性を示している。
論文 参考訳(メタデータ) (2021-06-04T16:59:23Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - HRINet: Alternative Supervision Network for High-resolution CT image
Interpolation [3.7966959476339035]
我々は,高分解能CT画像の生成を目的とした,新しいネットワークであるHigh Resolution Interpolation Network (HRINet)を提案する。
本稿では,ACAI と GAN のアイデアを組み合わせて,教師なしと教師なしのトレーニングを適用して,代替監督手法の新たなアイデアを提案する。
実験の結果,2562,5122画像の定量的,定性的に大きな改善が見られた。
論文 参考訳(メタデータ) (2020-02-11T15:09:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。