論文の概要: Progressive Object Transfer Detection
- arxiv url: http://arxiv.org/abs/2002.04741v2
- Date: Thu, 13 Feb 2020 05:06:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 20:15:26.362446
- Title: Progressive Object Transfer Detection
- Title(参考訳): プログレッシブオブジェクト転送検出
- Authors: Hao Chen, Yali Wang, Guoyou Wang, Xiang Bai, and Yu Qiao
- Abstract要約: 本稿では,新しいプログレッシブオブジェクト転送検出(POTD)フレームワークを提案する。
第一に、POTDは様々なドメインの様々なオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
第2に、POTDは2つの微妙な転送段階、すなわち、LSTD(low-Shot Transfer Detection)とWSTD(Weakly Supervised Transfer Detection)から構成される。
- 参考スコア(独自算出の注目度): 84.48927705173494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent development of object detection mainly depends on deep learning with
large-scale benchmarks. However, collecting such fully-annotated data is often
difficult or expensive for real-world applications, which restricts the power
of deep neural networks in practice. Alternatively, humans can detect new
objects with little annotation burden, since humans often use the prior
knowledge to identify new objects with few elaborately-annotated examples, and
subsequently generalize this capacity by exploiting objects from wild images.
Inspired by this procedure of learning to detect, we propose a novel
Progressive Object Transfer Detection (POTD) framework. Specifically, we make
three main contributions in this paper. First, POTD can leverage various object
supervision of different domains effectively into a progressive detection
procedure. Via such human-like learning, one can boost a target detection task
with few annotations. Second, POTD consists of two delicate transfer stages,
i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer
Detection (WSTD). In LSTD, we distill the implicit object knowledge of source
detector to enhance target detector with few annotations. It can effectively
warm up WSTD later on. In WSTD, we design a recurrent object labelling
mechanism for learning to annotate weakly-labeled images. More importantly, we
exploit the reliable object supervision from LSTD, which can further enhance
the robustness of target detector in the WSTD stage. Finally, we perform
extensive experiments on a number of challenging detection benchmarks with
different settings. The results demonstrate that, our POTD outperforms the
recent state-of-the-art approaches.
- Abstract(参考訳): 最近のオブジェクト検出の開発は、主に大規模ベンチマークによるディープラーニングに依存している。
しかし、そのような完全な注釈付きデータを収集することは、現実のアプリケーションでは困難またはコストがかかり、実際にはディープニューラルネットワークのパワーを制限する。
また、人間は注意負担の少ない新しい物体を検出できる。なぜなら、人間が事前の知識を使って、詳細な注釈のある例をほとんど持たない新しい物体を識別し、野生の画像から物体を搾取することによって、この能力を一般化するからだ。
本稿では,この学習手順に着想を得て,新しいプログレッシブオブジェクト転送検出(potd)フレームワークを提案する。
具体的には,本論文の主な貢献を3つ挙げる。
第一に、POTDは様々なドメインのオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
このような人間的な学習によって、少ないアノテーションでターゲット検出タスクを促進できる。
第二に、POTDは2つの微妙な転送段階、すなわちLSTD(low-Shot Transfer Detection)とWSTD(Weakly-Supervised Transfer Detection)から構成される。
LSTDでは,ソース検出器の暗黙のオブジェクト知識を蒸留し,アノテーションの少ないターゲット検出器を強化する。
後でwstdを効果的に温めることができます。
WSTDでは、弱いラベル付き画像に注釈をつけることを学習するための繰り返しオブジェクトラベリング機構を設計する。
さらに重要なことは、LSTDからの信頼性の高いオブジェクト監視を利用して、WSTDステージにおけるターゲット検出器の堅牢性をさらに高めることができる。
最後に、異なる設定で多くの挑戦的な検出ベンチマークについて広範な実験を行う。
その結果,POTDは最近の最先端のアプローチよりも優れていることがわかった。
関連論文リスト
- Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
論文 参考訳(メタデータ) (2024-04-29T04:56:52Z) - Robust Tiny Object Detection in Aerial Images amidst Label Noise [50.257696872021164]
本研究は,ノイズラベル管理下での微小物体検出の問題に対処する。
本稿では,DN-TOD(Denoising Tiny Object Detector)を提案する。
本手法は,1段と2段の両方のオブジェクト検出パイプラインにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-01-16T02:14:33Z) - Few-shot Object Detection in Remote Sensing: Lifting the Curse of
Incompletely Annotated Novel Objects [23.171410277239534]
物体検出のための自己学習型FSOD (ST-FSOD) アプローチを提案する。
提案手法は,様々なFSOD設定における最先端性能を大きなマージンで向上させる。
論文 参考訳(メタデータ) (2023-09-19T13:00:25Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
検出器内のOAA(Occlusion-Aware Attention)モジュールは、隠蔽された背景領域を抑えながらオブジェクトの特徴を強調する。
OAAは、隠蔽される可能性のある物体の検出器を強化する変調器として機能する。
最適輸送問題に基づくRe-ID埋め込みマッチングブロックを設計する。
論文 参考訳(メタデータ) (2023-08-30T06:56:53Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - A Survey of Deep Learning for Low-Shot Object Detection [44.20187548691372]
Low-Shot Object Detection (LSOD)は、アノテーション付きのサンプルからオブジェクトを検出する新しい研究トピックである。
本調査ではLSOD法について概観する。
論文 参考訳(メタデータ) (2021-12-06T06:56:00Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
画像全体のグローバルビューを効果的に学ぶために、極端なダウンサンプリング技術を使用するExtremely-Downsampled Network(EDN)を紹介します。
実験は、ednがリアルタイム速度でsart性能を達成することを実証する。
論文 参考訳(メタデータ) (2020-12-24T04:23:48Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。