論文の概要: Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2404.18426v3
- Date: Mon, 17 Jun 2024 02:15:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 04:48:05.706570
- Title: Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images
- Title(参考訳): リモートセンシング画像における高能率メタラーニングによるマルチスケールFew-Shotオブジェクト検出
- Authors: Wenbin Guan, Zijiu Yang, Xiaohong Wu, Liqiong Chen, Feng Huang, Xiaohai He, Honggang Chen,
- Abstract要約: YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
- 参考スコア(独自算出の注目度): 15.12889076965307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Presently, the task of few-shot object detection (FSOD) in remote sensing images (RSIs) has become a focal point of attention. Numerous few-shot detectors, particularly those based on two-stage detectors, face challenges when dealing with the multiscale complexities inherent in RSIs. Moreover, these detectors present impractical characteristics in real-world applications, mainly due to their unwieldy model parameters when handling large amount of data. In contrast, we recognize the advantages of one-stage detectors, including high detection speed and a global receptive field. Consequently, we choose the YOLOv7 one-stage detector as a baseline and subject it to a novel meta-learning training framework. This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight. Additionally, we thoroughly investigate the samples generated by the meta-learning strategy and introduce a novel meta-sampling approach to retain samples produced by our designed meta-detection head. Coupled with our devised meta-cross loss, we deliberately utilize "negative samples" that are often overlooked to extract valuable knowledge from them. This approach serves to enhance detection accuracy and efficiently refine the overall meta-learning strategy. To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors using the DIOR and NWPU VHR-10.v2 datasets, yielding satisfactory results.
- Abstract(参考訳): 現在、リモートセンシング画像(RSI)における小ショット物体検出(FSOD)の課題が注目されている。
多数の数発の検出器、特に2段階の検出器に基づく検出器は、RSIに固有のマルチスケールの複雑さを扱う際に困難に直面している。
さらに、これらの検出器は、大量のデータを扱う際に、主に不安定なモデルパラメータのために、現実世界の応用において非現実的な特性を示す。
対照的に、高い検出速度や大域的受容場を含む一段検出器の利点を認識している。
その結果,YOLOv71段検出器をベースラインとして選択し,新しいメタラーニングトレーニングフレームワークを提案する。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
さらに, メタ学習戦略によって生成されたサンプルを徹底的に調査し, 設計したメタ検出ヘッドが生成したサンプルを保持するための新しいメタサンプリング手法を提案する。
考案したメタクロス損失と相まって、しばしば見過ごされる"負のサンプル"を意図的に利用して、それらから貴重な知識を抽出します。
このアプローチは、検出精度を高め、全体的なメタ学習戦略を効率的に洗練する。
提案した検出器の有効性を検証するため,DIORとNWPU VHR-10.v2データセットを用いて現状の検出器の性能比較を行い,良好な結果を得た。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
本稿では,高品質なサリエンシキューを効果的に生成する2段階アクティベーション・ツー・サリエンシ(A2S)フレームワークを提案する。
トレーニングプロセス全体において、私たちのフレームワークにヒューマンアノテーションは関与していません。
本フレームワークは,既存のUSOD法と比較して高い性能を示した。
論文 参考訳(メタデータ) (2021-12-07T11:54:06Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z) - SWIPENET: Object detection in noisy underwater images [41.35601054297707]
本稿では,この2つの問題に対処するために,Sample-WeIghted hyPEr Network(SWIPENET)とCurriculum Multi-Class Adaboost(CMA)という堅牢なトレーニングパラダイムを提案する。
SWIPENETのバックボーンは、複数の高解像度かつセマンティックリッチなハイパーフィーチャーマップを生成し、小さなオブジェクト検出を大幅に改善する。
簡単な概念から難しい概念まで学習を促進する人間の教育プロセスに着想を得て,まず騒音の影響を受けないクリーンな検出器を訓練するCMA訓練パラダイムを提案する。
論文 参考訳(メタデータ) (2020-10-19T16:41:20Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
小型物体検出のための新しいニューラルネットワークアーキテクチャであるSample-WeIghted hyPEr Network(SWIPENet)を提案する。
提案するSWIPENet+IMAフレームワークは,複数の最先端オブジェクト検出手法に対して,検出精度の向上を実現する。
論文 参考訳(メタデータ) (2020-05-23T15:30:38Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Progressive Object Transfer Detection [84.48927705173494]
本稿では,新しいプログレッシブオブジェクト転送検出(POTD)フレームワークを提案する。
第一に、POTDは様々なドメインの様々なオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
第2に、POTDは2つの微妙な転送段階、すなわち、LSTD(low-Shot Transfer Detection)とWSTD(Weakly Supervised Transfer Detection)から構成される。
論文 参考訳(メタデータ) (2020-02-12T00:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。