論文の概要: Efficient Training of Deep Convolutional Neural Networks by Augmentation
in Embedding Space
- arxiv url: http://arxiv.org/abs/2002.04776v1
- Date: Wed, 12 Feb 2020 03:26:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 19:28:41.363883
- Title: Efficient Training of Deep Convolutional Neural Networks by Augmentation
in Embedding Space
- Title(参考訳): 埋め込み空間の強化による深層畳み込みニューラルネットワークの効率的な学習
- Authors: Mohammad Saeed Abrishami, Amir Erfan Eshratifar, David Eigen, Yanzhi
Wang, Shahin Nazarian, Massoud Pedram
- Abstract要約: データが少ないアプリケーションでは、ディープラーニングモデルの一般化を改善するために、転送学習とデータ拡張技術が一般的に使用される。
生入力空間におけるデータ拡張を伴う転送モデルを微調整すると、拡張入力毎に全ネットワークを実行するのに高い計算コストがかかる。
本稿では, 生の入力空間における拡張を, 埋め込み空間において純粋に作用する近似的に置き換える手法を提案する。
- 参考スコア(独自算出の注目度): 24.847651341371684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in the field of artificial intelligence have been made
possible by deep neural networks. In applications where data are scarce,
transfer learning and data augmentation techniques are commonly used to improve
the generalization of deep learning models. However, fine-tuning a transfer
model with data augmentation in the raw input space has a high computational
cost to run the full network for every augmented input. This is particularly
critical when large models are implemented on embedded devices with limited
computational and energy resources. In this work, we propose a method that
replaces the augmentation in the raw input space with an approximate one that
acts purely in the embedding space. Our experimental results show that the
proposed method drastically reduces the computation, while the accuracy of
models is negligibly compromised.
- Abstract(参考訳): 人工知能の分野での最近の進歩は、ディープニューラルネットワークによって実現されている。
データが少ないアプリケーションでは、ディープラーニングモデルの一般化を改善するために、転送学習とデータ拡張技術が一般的に使用される。
しかし、生の入力空間におけるデータ拡張を伴う転送モデルの微調整は、拡張入力毎に全ネットワークを実行するための計算コストが高い。
これは、計算資源とエネルギー資源が限られている組み込みデバイスに大規模なモデルを実装する場合、特に重要である。
本研究では,生の入力空間における拡張を,埋め込み空間で純粋に作用する近似的に置き換える手法を提案する。
実験の結果,提案手法は計算量を大幅に削減するが,モデルの精度は無視できることがわかった。
関連論文リスト
- Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
より小型で正確なデバイスを求めると、Deep Learningモデルはデプロイするには重すぎる。
予測符号化理論と動的早期退避に基づく浅層双方向ネットワークを提案する。
我々は,CIFAR-10上の画像分類におけるVGG-16と同等の精度を,より少ないパラメータと少ない計算量で達成した。
論文 参考訳(メタデータ) (2023-09-05T08:00:01Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
Recurrent Generative Adrial Networks (RGAN)のような最先端技術モデルは、リアルな合成データを生成するために使用される。
本稿では,データにグローバルな注意を払っているトランスフォーマーベースの生成敵ネットワークを,PAMAP2とリアルワールドヒューマンアクティビティ認識データセットでRGANと比較する。
論文 参考訳(メタデータ) (2021-09-02T16:47:29Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
本稿では、入力データの分布を近似し、この分布から新しいデータをサンプリングする新しい自動データ拡張モデルを提案する。
以上の結果から,拡張戦略は訓練が高速であり,ニューラルネットワークと最先端手法の両方の分類精度を向上させることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-05-27T11:07:09Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
効率的な強化学習のためのストアド埋め込み(SEER)について紹介します。
SEERは、既存の非政治深層強化学習方法の簡単な修正です。
計算とメモリを大幅に節約しながら、SEERがRLizableエージェントのパフォーマンスを低下させないことを示します。
論文 参考訳(メタデータ) (2021-03-04T08:14:10Z) - Efficient Low-Latency Dynamic Licensing for Deep Neural Network
Deployment on Edge Devices [0.0]
エッジデバイス上でのディープニューラルネットワークの展開と処理を解決するアーキテクチャを提案する。
このアーキテクチャを採用することで、デバイスの低レイテンシモデル更新が可能になる。
論文 参考訳(メタデータ) (2021-02-24T09:36:39Z) - Deep Transfer Learning with Ridge Regression [7.843067454030999]
大量のデータで訓練されたディープモデルは、関連するドメインから見えないデータに対して有望な一般化能力を示す。
我々は、深層ニューラルネットワーク(DNN)から生成された学習特徴ベクトルの低ランク性と、カーネルリッジ回帰(KRR)で提供されるクローズドフォームソリューションを活用することで、この問題に対処する。
本手法は、教師あり半教師ありのトランスファー学習タスクにおいて成功している。
論文 参考訳(メタデータ) (2020-06-11T20:21:35Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
本研究では,高忠実度モデルと低忠実度モデルの両方から生成された学習データを用いた伝達学習手法の適用について検討する。
前者のアプローチでは、低忠実度データに基づいて、入力を関心の出力にマッピングするニューラルネットワークモデルを訓練する。
次に、高忠実度データを使用して、低忠実度ネットワークの上層(s)のパラメータを適応させたり、より単純なニューラルネットワークをトレーニングして、低忠実度ネットワークの出力を高忠実度モデルのパラメータにマッピングする。
論文 参考訳(メタデータ) (2020-02-11T15:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。