論文の概要: Deep Transfer Learning with Ridge Regression
- arxiv url: http://arxiv.org/abs/2006.06791v1
- Date: Thu, 11 Jun 2020 20:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 12:38:25.319687
- Title: Deep Transfer Learning with Ridge Regression
- Title(参考訳): リッジ回帰を用いた深層伝達学習
- Authors: Shuai Tang, Virginia R. de Sa
- Abstract要約: 大量のデータで訓練されたディープモデルは、関連するドメインから見えないデータに対して有望な一般化能力を示す。
我々は、深層ニューラルネットワーク(DNN)から生成された学習特徴ベクトルの低ランク性と、カーネルリッジ回帰(KRR)で提供されるクローズドフォームソリューションを活用することで、この問題に対処する。
本手法は、教師あり半教師ありのトランスファー学習タスクにおいて成功している。
- 参考スコア(独自算出の注目度): 7.843067454030999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The large amount of online data and vast array of computing resources enable
current researchers in both industry and academia to employ the power of deep
learning with neural networks. While deep models trained with massive amounts
of data demonstrate promising generalisation ability on unseen data from
relevant domains, the computational cost of finetuning gradually becomes a
bottleneck in transfering the learning to new domains. We address this issue by
leveraging the low-rank property of learnt feature vectors produced from deep
neural networks (DNNs) with the closed-form solution provided in kernel ridge
regression (KRR). This frees transfer learning from finetuning and replaces it
with an ensemble of linear systems with many fewer hyperparameters. Our method
is successful on supervised and semi-supervised transfer learning tasks.
- Abstract(参考訳): 大量のオンラインデータと膨大な計算リソースのおかげで、業界とアカデミアの両方の現在の研究者は、ニューラルネットワークでディープラーニングのパワーを活用できる。
大量のデータでトレーニングされた深層モデルは、関連するドメインから取得できないデータに対する有望な一般化能力を示しているが、微調整の計算コストは、学習を新しいドメインに移す際のボトルネックとなる。
本稿では,deep neural networks (dnns) から生成する学習特徴ベクトルの低ランク特性と,kernel ridge regression (krr) で提供される閉形式解を用いることで,この問題に対処する。
これにより、転送学習を微調整から解放し、より少ないハイパーパラメータを持つ線形システムのアンサンブルに置き換える。
本手法は,教師付きおよび半教師付き転送学習タスクにおいて有効である。
関連論文リスト
- Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
本研究では,小さなデータセットに基づいてニューラルネットワークを学習するための反復的自己伝達学習手法を提案する。
提案手法は,小さなデータセットに対して,ほぼ一桁の精度でモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:48:04Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
上流データにより、グラフニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。
そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。
上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) (2022-06-30T14:24:32Z) - Being Friends Instead of Adversaries: Deep Networks Learn from Data
Simplified by Other Networks [23.886422706697882]
フレンドリートレーニング(Friendly Training)は、自動的に推定される摂動を追加することで入力データを変更するものである。
本稿では,ニューラルネットワークの有効性に触発されて,このアイデアを再考し,拡張する。
本稿では,入力データの変更に責任を負う補助的な多層ネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-18T16:59:35Z) - On The Transferability of Deep-Q Networks [6.822707222147354]
Transfer Learningは、ディープニューラルネットワークのトレーニングの成功を特徴付けるハードルを克服することのできる、効率的な機械学習パラダイムである。
TLの利用は、SL(Supervised Learning)において十分に確立され、成功した訓練実践であるが、DRL(Deep Reinforcement Learning)の適用性は稀である。
本稿では,3種類のDeep-Q NetworksのDRLベンチマークおよび新しい制御タスクセット上での転送可能性について検討する。
論文 参考訳(メタデータ) (2021-10-06T10:29:37Z) - Neuroevolutionary Transfer Learning of Deep Recurrent Neural Networks
through Network-Aware Adaptation [57.46377517266827]
本研究はN-ASTL(Network-Aware Adaptive Structure Transfer Learning)を導入する。
N-ASTLは、ソースネットワークのトポロジと重み分布に関する統計情報を利用して、新しい入力ニューロンと出力ニューロンが既存の構造にどのように統合されるかを伝える。
結果は、これまで不可能だった現実世界のデータセットを転送する機能など、従来の最先端よりも改善されていることを示している。
論文 参考訳(メタデータ) (2020-06-04T06:07:30Z) - Learning across label confidence distributions using Filtered Transfer
Learning [0.44040106718326594]
本稿では,大きな可変信頼度データセットを持つノイズの多いデータシステムにおいて,予測能力を向上させるための伝達学習手法を提案する。
本稿では、複数の階層のデータ信頼度を個別のタスクとして定義する、FTL(Filted Transfer Learning)と呼ばれるディープニューラルネットワーク手法を提案する。
FTLを用いてラベル信頼度分布を段階的に学習すると、単一の信頼範囲でトレーニングされたディープニューラルネットワークモデルよりも高いパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2020-06-03T21:00:11Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
本研究では,高忠実度モデルと低忠実度モデルの両方から生成された学習データを用いた伝達学習手法の適用について検討する。
前者のアプローチでは、低忠実度データに基づいて、入力を関心の出力にマッピングするニューラルネットワークモデルを訓練する。
次に、高忠実度データを使用して、低忠実度ネットワークの上層(s)のパラメータを適応させたり、より単純なニューラルネットワークをトレーニングして、低忠実度ネットワークの出力を高忠実度モデルのパラメータにマッピングする。
論文 参考訳(メタデータ) (2020-02-11T15:56:11Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。