Ensemble of Sparse Gaussian Process Experts for Implicit Surface Mapping
with Streaming Data
- URL: http://arxiv.org/abs/2002.04911v1
- Date: Wed, 12 Feb 2020 11:06:48 GMT
- Title: Ensemble of Sparse Gaussian Process Experts for Implicit Surface Mapping
with Streaming Data
- Authors: Johannes A. Stork and Todor Stoyanov
- Abstract summary: We learn a compact and continuous implicit surface map of an environment from a stream of range data with known poses.
Instead of inserting all arriving data into the GP models, we greedily trade-off between model complexity and prediction error.
The results show that we can learn compact and accurate implicit surface models under different conditions.
- Score: 13.56926815833324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creating maps is an essential task in robotics and provides the basis for
effective planning and navigation. In this paper, we learn a compact and
continuous implicit surface map of an environment from a stream of range data
with known poses. For this, we create and incrementally adjust an ensemble of
approximate Gaussian process (GP) experts which are each responsible for a
different part of the map. Instead of inserting all arriving data into the GP
models, we greedily trade-off between model complexity and prediction error.
Our algorithm therefore uses less resources on areas with few geometric
features and more where the environment is rich in variety. We evaluate our
approach on synthetic and real-world data sets and analyze sensitivity to
parameters and measurement noise. The results show that we can learn compact
and accurate implicit surface models under different conditions, with a
performance comparable to or better than that of exact GP regression with
subsampled data.
Related papers
- GeoMix: Towards Geometry-Aware Data Augmentation [76.09914619612812]
Mixup has shown considerable success in mitigating the challenges posed by limited labeled data in image classification.
We propose Geometric Mixup (GeoMix), a simple and interpretable Mixup approach leveraging in-place graph editing.
arXiv Detail & Related papers (2024-07-15T12:58:04Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
We propose a deep model for sparse and dense matching, termed RGM (Robust Generalist Matching)
To narrow the gap between synthetic training samples and real-world scenarios, we build a new, large-scale dataset with sparse correspondence ground truth.
We are able to mix up various dense and sparse matching datasets, significantly improving the training diversity.
arXiv Detail & Related papers (2023-10-18T07:30:08Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
Click-based interactive segmentation (IS) aims to extract the target objects under user interaction.
Most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation.
We propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image.
arXiv Detail & Related papers (2023-02-28T14:01:01Z) - Neural-Sim: Learning to Generate Training Data with NeRF [31.81496344354997]
We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application's loss function.
Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task.
arXiv Detail & Related papers (2022-07-22T22:48:33Z) - Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction [11.215334675788952]
This paper presents a semantic planar SLAM system that improves pose estimation and mapping using cues from an instance planar segmentation network.
While the mainstream approaches are using RGB-D sensors, employing a monocular camera with such a system still faces challenges such as robust data association and precise geometric model fitting.
arXiv Detail & Related papers (2021-08-09T18:16:08Z) - Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model
Inversion [14.097477944789484]
This paper introduces the use of deep Gaussian Processes (DGPs) for bio-geo-physical model inversion.
Unlike shallow GP models, DGPs account for complicated (modular, hierarchical) processes, provide an efficient solution that scales well to big datasets.
arXiv Detail & Related papers (2021-04-16T10:42:01Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Locally induced Gaussian processes for large-scale simulation
experiments [0.0]
We show how placement of inducing points and their multitude can be thwarted by pathologies.
Our proposed methodology hybridizes global inducing point and data subset-based local GP approximation.
We show that local inducing points extend their global and data-subset component parts on the accuracy--computational efficiency frontier.
arXiv Detail & Related papers (2020-08-28T21:37:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.