M-estimators of scatter with eigenvalue shrinkage
- URL: http://arxiv.org/abs/2002.04996v1
- Date: Wed, 12 Feb 2020 13:47:58 GMT
- Title: M-estimators of scatter with eigenvalue shrinkage
- Authors: Esa Ollila, Daniel P. Palomar and Frederic Pascal
- Abstract summary: In this paper, a more general approach is considered in which the SCM is replaced by an M-estimator of scatter matrix.
Our approach permits the use of any weight function such as Gaussian, Huber's, or $t$ weight functions.
Our simulation examples illustrate that shrinkage M-estimators based on the proposed optimal tuning combined with robust weight function do not loose in performance to shrinkage SCM estimator when the data is Gaussian.
- Score: 19.82023576081279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A popular regularized (shrinkage) covariance estimator is the shrinkage
sample covariance matrix (SCM) which shares the same set of eigenvectors as the
SCM but shrinks its eigenvalues toward its grand mean. In this paper, a more
general approach is considered in which the SCM is replaced by an M-estimator
of scatter matrix and a fully automatic data adaptive method to compute the
optimal shrinkage parameter with minimum mean squared error is proposed. Our
approach permits the use of any weight function such as Gaussian, Huber's, or
$t$ weight functions, all of which are commonly used in M-estimation framework.
Our simulation examples illustrate that shrinkage M-estimators based on the
proposed optimal tuning combined with robust weight function do not loose in
performance to shrinkage SCM estimator when the data is Gaussian, but provide
significantly improved performance when the data is sampled from a heavy-tailed
distribution.
Related papers
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
We propose a convex formulation with well-established properties for MGGD parameters.
The proposed framework is flexible as it combines a variety of regularizations for the precision matrix, the mean and perturbations.
Experiments show a more accurate precision and covariance matrix estimation with similar performance for the mean vector parameter.
arXiv Detail & Related papers (2023-12-12T18:08:04Z) - Algorithme EM r\'egularis\'e [0.0]
This paper presents a regularized version of the EM algorithm that efficiently uses prior knowledge to cope with a small sample size.
Experiments on real data highlight the good performance of the proposed algorithm for clustering purposes.
arXiv Detail & Related papers (2023-07-04T23:19:25Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
Nonnegative Matrix Factorization (NMF) is a widely-used data analysis technique, and has yielded impressive results in many real-world tasks.
In this study, an Entropy Minimizing Matrix Factorization framework (EMMF) is developed to tackle the above problem.
Considering that the outliers are usually much less than the normal samples, a new entropy loss function is established for matrix factorization.
arXiv Detail & Related papers (2021-03-24T21:08:43Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Effective Data-aware Covariance Estimator from Compressed Data [63.16042585506435]
We propose a data-aware weighted sampling based covariance matrix estimator, namely DACE, which can provide an unbiased covariance matrix estimation.
We conduct extensive experiments on both synthetic and real-world datasets to demonstrate the superior performance of our DACE.
arXiv Detail & Related papers (2020-10-10T10:10:28Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Robust Compressed Sensing using Generative Models [98.64228459705859]
In this paper we propose an algorithm inspired by the Median-of-Means (MOM)
Our algorithm guarantees recovery for heavy-tailed data, even in the presence of outliers.
arXiv Detail & Related papers (2020-06-16T19:07:41Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
We consider the problem of jointly estimating multiple related zero-mean Gaussian distributions from data.
We propose a distributed method that scales to large problems, and illustrate the efficacy of the method with examples in finance, radar signal processing, and weather forecasting.
arXiv Detail & Related papers (2020-05-04T18:00:59Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
We propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data.
We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation.
We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
arXiv Detail & Related papers (2020-04-11T02:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.