The empirical duality gap of constrained statistical learning
- URL: http://arxiv.org/abs/2002.05183v1
- Date: Wed, 12 Feb 2020 19:12:29 GMT
- Title: The empirical duality gap of constrained statistical learning
- Authors: Luiz F. O. Chamon and Santiago Paternain and Miguel Calvo-Fullana and
Alejandro Ribeiro
- Abstract summary: We study the study of constrained statistical learning problems, the unconstrained version of which are at the core of virtually all modern information processing.
We propose to tackle the constrained statistical problem overcoming its infinite dimensionality, unknown distributions, and constraints by leveraging finite dimensional parameterizations, sample averages, and duality theory.
We demonstrate the effectiveness and usefulness of this constrained formulation in a fair learning application.
- Score: 115.23598260228587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is concerned with the study of constrained statistical learning
problems, the unconstrained version of which are at the core of virtually all
of modern information processing. Accounting for constraints, however, is
paramount to incorporate prior knowledge and impose desired structural and
statistical properties on the solutions. Still, solving constrained statistical
problems remains challenging and guarantees scarce, leaving them to be tackled
using regularized formulations. Though practical and effective, selecting
regularization parameters so as to satisfy requirements is challenging, if at
all possible, due to the lack of a straightforward relation between parameters
and constraints. In this work, we propose to directly tackle the constrained
statistical problem overcoming its infinite dimensionality, unknown
distributions, and constraints by leveraging finite dimensional
parameterizations, sample averages, and duality theory. Aside from making the
problem tractable, these tools allow us to bound the empirical duality gap,
i.e., the difference between our approximate tractable solutions and the actual
solutions of the original statistical problem. We demonstrate the effectiveness
and usefulness of this constrained formulation in a fair learning application.
Related papers
- Statistical learning for constrained functional parameters in infinite-dimensional models with applications in fair machine learning [4.974815773537217]
We study the general problem of constrained statistical machine learning through a statistical functional lens.
We characterize the constrained functional parameter as the minimizer of a penalized risk criterion using a Lagrange multiplier formulation.
Our results suggest natural estimators of the constrained parameter that can be constructed by combining estimates of unconstrained parameters.
arXiv Detail & Related papers (2024-04-15T14:59:21Z) - Near-Optimal Solutions of Constrained Learning Problems [85.48853063302764]
In machine learning systems, the need to curtail their behavior has become increasingly apparent.
This is evidenced by recent advancements towards developing models that satisfy dual robustness variables.
Our results show that rich parametrizations effectively mitigate non-dimensional, finite learning problems.
arXiv Detail & Related papers (2024-03-18T14:55:45Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
arXiv Detail & Related papers (2024-02-13T17:09:29Z) - Online Constraint Tightening in Stochastic Model Predictive Control: A
Regression Approach [49.056933332667114]
No analytical solutions exist for chance-constrained optimal control problems.
We propose a data-driven approach for learning the constraint-tightening parameters online during control.
Our approach yields constraint-tightening parameters that tightly satisfy the chance constraints.
arXiv Detail & Related papers (2023-10-04T16:22:02Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
We develop a Chance Constraint Learning (CCL) methodology with a focus on mixed-integer linear optimization problems.
CCL makes use of linearizable machine learning models to estimate conditional quantiles of the learned variables.
An open-access software has been developed to be used by practitioners.
arXiv Detail & Related papers (2022-07-08T11:54:39Z) - Constrained Learning with Non-Convex Losses [119.8736858597118]
Though learning has become a core technology of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced solutions.
arXiv Detail & Related papers (2021-03-08T23:10:33Z) - Probably Approximately Correct Constrained Learning [135.48447120228658]
We develop a generalization theory based on the probably approximately correct (PAC) learning framework.
We show that imposing a learner does not make a learning problem harder in the sense that any PAC learnable class is also a constrained learner.
We analyze the properties of this solution and use it to illustrate how constrained learning can address problems in fair and robust classification.
arXiv Detail & Related papers (2020-06-09T19:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.