Statistical learning for constrained functional parameters in infinite-dimensional models with applications in fair machine learning
- URL: http://arxiv.org/abs/2404.09847v1
- Date: Mon, 15 Apr 2024 14:59:21 GMT
- Title: Statistical learning for constrained functional parameters in infinite-dimensional models with applications in fair machine learning
- Authors: Razieh Nabi, Nima S. Hejazi, Mark J. van der Laan, David Benkeser,
- Abstract summary: We study the general problem of constrained statistical machine learning through a statistical functional lens.
We characterize the constrained functional parameter as the minimizer of a penalized risk criterion using a Lagrange multiplier formulation.
Our results suggest natural estimators of the constrained parameter that can be constructed by combining estimates of unconstrained parameters.
- Score: 4.974815773537217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constrained learning has become increasingly important, especially in the realm of algorithmic fairness and machine learning. In these settings, predictive models are developed specifically to satisfy pre-defined notions of fairness. Here, we study the general problem of constrained statistical machine learning through a statistical functional lens. We consider learning a function-valued parameter of interest under the constraint that one or several pre-specified real-valued functional parameters equal zero or are otherwise bounded. We characterize the constrained functional parameter as the minimizer of a penalized risk criterion using a Lagrange multiplier formulation. We show that closed-form solutions for the optimal constrained parameter are often available, providing insight into mechanisms that drive fairness in predictive models. Our results also suggest natural estimators of the constrained parameter that can be constructed by combining estimates of unconstrained parameters of the data generating distribution. Thus, our estimation procedure for constructing fair machine learning algorithms can be applied in conjunction with any statistical learning approach and off-the-shelf software. We demonstrate the generality of our method by explicitly considering a number of examples of statistical fairness constraints and implementing the approach using several popular learning approaches.
Related papers
- Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - On the Forward Invariance of Neural ODEs [92.07281135902922]
We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications.
Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system.
arXiv Detail & Related papers (2022-10-10T15:18:28Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
We develop a Chance Constraint Learning (CCL) methodology with a focus on mixed-integer linear optimization problems.
CCL makes use of linearizable machine learning models to estimate conditional quantiles of the learned variables.
An open-access software has been developed to be used by practitioners.
arXiv Detail & Related papers (2022-07-08T11:54:39Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
We explore the potential for semiparametric theory to be used to improve neural networks and machine learning algorithms.
We propose a new neural network method MultiNet, which seeks the flexibility and diversity of an ensemble using a single architecture.
arXiv Detail & Related papers (2022-02-18T09:35:51Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
We show how to estimate parameters from max-stable processes, where inference is exceptionally challenging.
We use data from model simulations as input and train deep neural networks to learn statistical parameters.
arXiv Detail & Related papers (2021-07-29T21:59:48Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
Black box models in machine learning have demonstrated excellent predictive performance in complex problems and high-dimensional settings.
Their lack of transparency and interpretability restrict the applicability of such models in critical decision-making processes.
We propose a novel approach to trading off interpretability and performance in prediction models using ideas from semiparametric statistics.
arXiv Detail & Related papers (2020-06-08T16:38:15Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Selective machine learning of doubly robust functionals [6.880360838661036]
We propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model.
We introduce a new selection criterion aimed at bias reduction in estimating the functional of interest based on a novel definition of pseudo-risk.
arXiv Detail & Related papers (2019-11-05T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.