Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation
- URL: http://arxiv.org/abs/2402.08602v1
- Date: Tue, 13 Feb 2024 17:09:29 GMT
- Title: Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation
- Authors: Xiaoou Li and Hongru Zhao
- Abstract summary: We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
- Score: 1.1530723302736279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by modern applications such as computerized adaptive testing,
sequential rank aggregation, and heterogeneous data source selection, we study
the problem of active sequential estimation, which involves adaptively
selecting experiments for sequentially collected data. The goal is to design
experiment selection rules for more accurate model estimation. Greedy
information-based experiment selection methods, optimizing the information gain
for one-step ahead, have been employed in practice thanks to their
computational convenience, flexibility to context or task changes, and broad
applicability. However, statistical analysis is restricted to one-dimensional
cases due to the problem's combinatorial nature and the seemingly limited
capacity of greedy algorithms, leaving the multidimensional problem open.
In this study, we close the gap for multidimensional problems. In particular,
we propose adopting a class of greedy experiment selection methods and provide
statistical analysis for the maximum likelihood estimator following these
selection rules. This class encompasses both existing methods and introduces
new methods with improved numerical efficiency. We prove that these methods
produce consistent and asymptotically normal estimators. Additionally, within a
decision theory framework, we establish that the proposed methods achieve
asymptotic optimality when the risk measure aligns with the selection rule. We
also conduct extensive numerical studies on both simulated and real data to
illustrate the efficacy of the proposed methods.
From a technical perspective, we devise new analytical tools to address
theoretical challenges. These analytical tools are of independent theoretical
interest and may be reused in related problems involving stochastic
approximation and sequential designs.
Related papers
- The Power of Adaptivity in Experimental Design [14.088972921434761]
This paper addresses the fundamental question of determining the optimal accuracy in estimating the treatment effect.
By incorporating the concept of doubly robust method into sequential experimental design, we frame the optimal estimation problem as an online bandit learning problem.
Using tools and ideas from both bandit algorithm design and adaptive statistical estimation, we propose a general low switching adaptive experiment framework.
arXiv Detail & Related papers (2024-10-07T23:22:51Z) - Comparative study of regression vs pairwise models for surrogate-based heuristic optimisation [1.2535250082638645]
This paper addresses the formulation of surrogate problems as both regression models that approximate fitness (surface surrogate models) and a novel way to connect classification models (pairwise surrogate models)
The performance of the overall search, when using online machine learning-based surrogate models, depends not only on the accuracy of the predictive model but also on the kind of bias towards positive or negative cases.
arXiv Detail & Related papers (2024-10-04T13:19:06Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Best-Effort Adaptation [62.00856290846247]
We present a new theoretical analysis of sample reweighting methods, including bounds holding uniformly over the weights.
We show how these bounds can guide the design of learning algorithms that we discuss in detail.
We report the results of a series of experiments demonstrating the effectiveness of our best-effort adaptation and domain adaptation algorithms.
arXiv Detail & Related papers (2023-05-10T00:09:07Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - More Powerful Conditional Selective Inference for Generalized Lasso by
Parametric Programming [20.309302270008146]
Conditional selective inference (SI) has been studied intensively as a new statistical inference framework for data-driven hypotheses.
We propose a more powerful and general conditional SI method for a class of problems that can be converted into quadratic parametric programming.
arXiv Detail & Related papers (2021-05-11T10:12:00Z) - Algorithms for Solving Nonlinear Binary Optimization Problems in Robust
Causal Inference [2.169755083801688]
We propose greedy algorithms to solve the robust causal inference test instances from observational data with continuous outcomes.
By leveraging the structure of the feasibility formulation, we develop greedy schemes that are efficient in solving robust test problems.
arXiv Detail & Related papers (2020-12-22T16:12:11Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
This article provides a comprehensive study of the state-of-the-art of the topic.
We highlight limitations, benefits, connections and differences among the different techniques.
Problems and possible solutions with the use of improper priors are also described.
arXiv Detail & Related papers (2020-05-17T18:31:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.