論文の概要: Geom-GCN: Geometric Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2002.05287v2
- Date: Fri, 14 Feb 2020 01:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 09:34:29.185018
- Title: Geom-GCN: Geometric Graph Convolutional Networks
- Title(参考訳): geom-gcn:幾何グラフ畳み込みネットワーク
- Authors: Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, Bo Yang
- Abstract要約: 本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
- 参考スコア(独自算出の注目度): 15.783571061254847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Message-passing neural networks (MPNNs) have been successfully applied to
representation learning on graphs in a variety of real-world applications.
However, two fundamental weaknesses of MPNNs' aggregators limit their ability
to represent graph-structured data: losing the structural information of nodes
in neighborhoods and lacking the ability to capture long-range dependencies in
disassortative graphs. Few studies have noticed the weaknesses from different
perspectives. From the observations on classical neural network and network
geometry, we propose a novel geometric aggregation scheme for graph neural
networks to overcome the two weaknesses. The behind basic idea is the
aggregation on a graph can benefit from a continuous space underlying the
graph. The proposed aggregation scheme is permutation-invariant and consists of
three modules, node embedding, structural neighborhood, and bi-level
aggregation. We also present an implementation of the scheme in graph
convolutional networks, termed Geom-GCN (Geometric Graph Convolutional
Networks), to perform transductive learning on graphs. Experimental results
show the proposed Geom-GCN achieved state-of-the-art performance on a wide
range of open datasets of graphs. Code is available at
https://github.com/graphdml-uiuc-jlu/geom-gcn.
- Abstract(参考訳): メッセージパッシングニューラルネットワーク(MPNN)は、さまざまな現実世界のアプリケーションにおいて、グラフ上の表現学習に成功している。
しかし、MPNNのアグリゲータの2つの根本的な弱点は、グラフ構造化されたデータを表現する能力を制限することである。
異なる視点から弱点に気付いた研究はほとんどない。
古典的ニューラルネットワークとネットワーク幾何学の観察から,グラフニューラルネットワークの2つの弱点を克服するための新しい幾何集約スキームを提案する。
基本的な考え方の背後には、グラフ上のアグリゲーションは、グラフの基盤となる連続的な空間の恩恵を受けることができる。
提案手法は置換不変であり,ノード埋め込み,構造近傍,バイレベルアグリゲーションの3つのモジュールからなる。
また,この手法をジオメトリグラフ畳み込みネットワーク(geometric graph convolutional networks)と呼ぶグラフ畳み込みネットワークにおいて実装し,グラフ上でのトランスダクティブ学習を行う。
実験結果から,提案したGeom-GCNは,グラフの幅広いオープンデータセット上で最先端の性能を達成した。
コードはhttps://github.com/graphdml-uiuc-jlu/geom-gcnで入手できる。
関連論文リスト
- The GECo algorithm for Graph Neural Networks Explanation [0.0]
本稿では,グラフ分類問題の解釈可能性に対処するために,グラフコミュニティを包含する新たな方法論を提案する。
GECoと呼ばれる提案手法は、コミュニティがグラフノードの密結合部分集合であるなら、この性質はグラフ分類において役割を果たすべきであるという考えを生かしている。
得られた結果は、人工グラフデータセットおよびほとんどの実世界のデータセットの他の手法よりも優れている。
論文 参考訳(メタデータ) (2024-11-18T09:08:30Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
任意のグラフの大きな問題は、ノードの標準位置情報の欠如である。
ノードの位置ノード(PE)を導入し、Transformerのように入力層に注入する。
両方のGNNクラスで学習可能なPEを考えると、分子データセットのパフォーマンスは2.87%から64.14%に向上する。
論文 参考訳(メタデータ) (2021-10-15T05:59:15Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Schema-Aware Deep Graph Convolutional Networks for Heterogeneous Graphs [10.526065883783899]
グラフ畳み込みネットワーク(GCN)に基づくアプローチは、複雑でグラフ構造化された問題を解決するために大きな進歩を遂げた。
我々はGCNフレームワーク「深部不均一グラフ畳み込みネットワーク(DHGCN)」を提案する。
それは異種グラフのスキーマを利用し、多くのホップを効果的に活用するために階層的アプローチを使用します。
論文 参考訳(メタデータ) (2021-05-03T06:24:27Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Incomplete Graph Representation and Learning via Partial Graph Neural
Networks [7.227805463462352]
多くのアプリケーションでは、グラフノードの属性が部分的に未知/欠落している不完全な形式でグラフがやってくる可能性がある。
既存のGNNは、属性不完全なグラフデータを直接処理できない完全なグラフに基づいて設計されている。
本研究では,属性不完全グラフ表現と学習のための部分グラフニューラルネットワーク(PaGNN)を新たに開発した。
論文 参考訳(メタデータ) (2020-03-23T08:29:59Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
本稿では、EdgeNetの概念を通じて、最先端グラフニューラルネットワーク(GNN)を統一する一般的なフレームワークを提案する。
EdgeNetはGNNアーキテクチャであり、異なるノードが異なるパラメータを使って異なる隣人の情報を測定することができる。
これは、ノードが実行でき、既存のグラフ畳み込みニューラルネットワーク(GCNN)とグラフアテンションネットワーク(GAT)の1つの定式化の下で包含できる一般的な線形で局所的な操作である。
論文 参考訳(メタデータ) (2020-01-21T15:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。