論文の概要: Federated Learning of a Mixture of Global and Local Models
- arxiv url: http://arxiv.org/abs/2002.05516v3
- Date: Fri, 12 Feb 2021 06:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 08:37:56.886277
- Title: Federated Learning of a Mixture of Global and Local Models
- Title(参考訳): グローバルモデルとローカルモデルの混合学習
- Authors: Filip Hanzely and Peter Richt\'arik
- Abstract要約: 本稿では,フェデレート学習モデルのトレーニングのための新しい最適化形式を提案する。
局所的なステップは異種データの問題に対するコミュニケーションを改善することができることを示す。
特に,i) 局所的なステップが異種データの問題に対するコミュニケーションを改善することを示し,i) パーソナライゼーションが通信複雑性の低減をもたらすことを指摘した。
- 参考スコア(独自算出の注目度): 10.279748604797911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new optimization formulation for training federated learning
models. The standard formulation has the form of an empirical risk minimization
problem constructed to find a single global model trained from the private data
stored across all participating devices. In contrast, our formulation seeks an
explicit trade-off between this traditional global model and the local models,
which can be learned by each device from its own private data without any
communication. Further, we develop several efficient variants of SGD (with and
without partial participation and with and without variance reduction) for
solving the new formulation and prove communication complexity guarantees.
Notably, our methods are similar but not identical to federated averaging /
local SGD, thus shedding some light on the role of local steps in federated
learning. In particular, we are the first to i) show that local steps can
improve communication for problems with heterogeneous data, and ii) point out
that personalization yields reduced communication complexity.
- Abstract(参考訳): フェデレート学習モデルのトレーニングのための新しい最適化形式を提案する。
標準定式化は、すべての参加デバイスにまたがるプライベートデータからトレーニングされた単一のグローバルモデルを見つけるために構築された経験的リスク最小化問題である。
対照的に、当社の定式化では、従来のグローバルモデルとローカルモデルとの明確なトレードオフを求めており、各デバイスが通信なしで独自のプライベートデータから学習することができる。
さらに,新たな定式化の解決と通信複雑性保証の証明のために,SGDの複数の効率的な変種(部分的参加および分散化なし)を開発した。
特に,本手法は平均化/局所sgd法と同一ではないため,連合学習における局所的ステップの役割に光を当てている。
特に、私たちは初めてです。
一 ローカルステップが異種データの問題に対するコミュニケーションを改善すること、及び
ii) パーソナライゼーションはコミュニケーションの複雑さを減少させる。
関連論文リスト
- Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Personalized Federated Learning via Gradient Modulation for
Heterogeneous Text Summarization [21.825321314169642]
本研究では,グローバルモデルを生データを共有せずに協調学習方法で共有することのできる,連合学習テキスト要約方式を提案する。
FedSUMMはタスク固有テキスト要約のためのPFLアルゴリズム上でより高速なモデル収束を実現することができる。
論文 参考訳(メタデータ) (2023-04-23T03:18:46Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Exploiting Personalized Invariance for Better Out-of-distribution
Generalization in Federated Learning [13.246981646250518]
本稿では, 個人化学習手法と比較して, 個人化非分散を探索する汎用的な二重正規化学習フレームワークを提案する。
本手法は,既存のフェデレーション学習や不変学習よりも,多様なアウト・オブ・ディストリビューションおよび非IIDデータケースにおいて優れていることを示す。
論文 参考訳(メタデータ) (2022-11-21T08:17:03Z) - FedGen: Generalizable Federated Learning for Sequential Data [8.784435748969806]
多くの実世界の分散環境では、バイアスとデータサンプリングの問題により、急激な相関が存在する。
我々はFedGenという汎用的なフェデレーション学習フレームワークを提案し、クライアントが素早い特徴と不変な特徴を識別および識別できるようにする。
FedGenは、より優れた一般化を実現し、現在のフェデレーション学習手法の精度を24%以上上回るモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-11-03T15:48:14Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Decentralised Person Re-Identification with Selective Knowledge
Aggregation [56.40855978874077]
既存の人物再識別(Re-ID)手法は、主に、モデル学習のためのコレクションにすべてのトレーニングデータを共有する集中型学習パラダイムに従っている。
グローバルに一般化されたモデル(サーバ)を構築するための分散(フェデレーション)Re-ID学習を導入した最近の2つの作品がある。
しかし、これらの手法は、個々のクライアントドメインのRe-IDタスクのパフォーマンスを最大化するために一般化されたモデルを適用する方法に乏しい。
我々は、モデルパーソナライゼーションと一般化のトレードオフを最適化するために、分散化されたRe-IDに対して、新しい選択的知識集約アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-21T18:09:53Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning(FL)は、機械学習モデルのデバイス上での協調トレーニングのためのフレームワークである。
FLにおける最初の取り組みは、クライアント間で平均的なパフォーマンスを持つ単一のグローバルモデルを学ぶことに焦点を当てたが、グローバルモデルは、与えられたクライアントに対して任意に悪いかもしれない。
我々は,各局所データ分布が未知の基底分布の混合であるというフレキシブルな仮定の下で,フェデレーションMTLについて検討した。
論文 参考訳(メタデータ) (2021-08-23T15:47:53Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
フェデレートラーニング(Federated Learning)とは、複数のデバイスに分散したプライベートデータ上でモデルをトレーニングする手法である。
本稿では,各デバイス上でコンパクトな局所表現を共同で学習する新しいフェデレーション学習アルゴリズムを提案する。
また、プライバシが鍵となる実世界のモバイルデータから、パーソナライズされた気分予測のタスクを評価する。
論文 参考訳(メタデータ) (2020-01-06T12:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。