An Optimal Multistage Stochastic Gradient Method for Minimax Problems
- URL: http://arxiv.org/abs/2002.05683v1
- Date: Thu, 13 Feb 2020 18:01:18 GMT
- Title: An Optimal Multistage Stochastic Gradient Method for Minimax Problems
- Authors: Alireza Fallah, Asuman Ozdaglar, Sarath Pattathil
- Abstract summary: We study the minimax optimization problem in the smooth and strongly convex-strongly concave setting.
We first analyze the Gradient Descent Ascent (GDA) method with constant stepsize.
We propose a multistage variant of GDA that runs in multiple stages with a particular learning rate decay schedule.
- Score: 8.615625517708324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the minimax optimization problem in the smooth and
strongly convex-strongly concave setting when we have access to noisy estimates
of gradients. In particular, we first analyze the stochastic Gradient Descent
Ascent (GDA) method with constant stepsize, and show that it converges to a
neighborhood of the solution of the minimax problem. We further provide tight
bounds on the convergence rate and the size of this neighborhood. Next, we
propose a multistage variant of stochastic GDA (M-GDA) that runs in multiple
stages with a particular learning rate decay schedule and converges to the
exact solution of the minimax problem. We show M-GDA achieves the lower bounds
in terms of noise dependence without any assumptions on the knowledge of noise
characteristics. We also show that M-GDA obtains a linear decay rate with
respect to the error's dependence on the initial error, although the dependence
on condition number is suboptimal. In order to improve this dependence, we
apply the multistage machinery to the stochastic Optimistic Gradient Descent
Ascent (OGDA) algorithm and propose the M-OGDA algorithm which also achieves
the optimal linear decay rate with respect to the initial error. To the best of
our knowledge, this method is the first to simultaneously achieve the best
dependence on noise characteristic as well as the initial error and condition
number.
Related papers
- From Gradient Clipping to Normalization for Heavy Tailed SGD [19.369399536643773]
Recent empirical evidence indicates that machine learning applications involve heavy-tailed noise, which challenges the standard assumptions of bounded variance in practice.
In this paper, we show that it is possible to achieve tightness of the gradient-dependent noise convergence problem under tailed noise.
arXiv Detail & Related papers (2024-10-17T17:59:01Z) - Accelerated stochastic approximation with state-dependent noise [7.4648480208501455]
We consider a class of smooth convex optimization problems under general assumptions on the quadratic noise in the gradient observation.
Such problems naturally arise in a variety of applications, in particular, in the well-known generalized linear regression problem in statistics.
We show that both SAGD and SGE, under appropriate conditions, achieve the optimal convergence rate.
arXiv Detail & Related papers (2023-07-04T06:06:10Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
arXiv Detail & Related papers (2022-06-08T10:17:40Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Stochastic gradient algorithms from ODE splitting perspective [0.0]
We present a different view on optimization, which goes back to the splitting schemes for approximate solutions of ODE.
In this work, we provide a connection between descent approach and gradient first-order splitting scheme for ODE.
We consider the special case of splitting, which is inspired by machine learning applications and derive a new upper bound on the global splitting error for it.
arXiv Detail & Related papers (2020-04-19T22:45:32Z) - Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max
Optimization [61.66927778694731]
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for strongly convex minimization.
Our result is the first one that shows Epoch-GDA can achieve the optimal rate of $O (1/T)$ for the duality gap of SCSC min-max problems.
arXiv Detail & Related papers (2020-02-13T02:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.