論文の概要: Gaussian process imputation of multiple financial series
- arxiv url: http://arxiv.org/abs/2002.05789v1
- Date: Tue, 11 Feb 2020 19:18:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 02:03:24.178426
- Title: Gaussian process imputation of multiple financial series
- Title(参考訳): ガウス過程による複数の金融シリーズの含意
- Authors: Taco de Wolff, Alejandro Cuevas, Felipe Tobar
- Abstract要約: 金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
- 参考スコア(独自算出の注目度): 71.08576457371433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Financial Signal Processing, multiple time series such as financial
indicators, stock prices and exchange rates are strongly coupled due to their
dependence on the latent state of the market and therefore they are required to
be jointly analysed. We focus on learning the relationships among financial
time series by modelling them through a multi-output Gaussian process (MOGP)
with expressive covariance functions. Learning these market dependencies among
financial series is crucial for the imputation and prediction of financial
observations. The proposed model is validated experimentally on two real-world
financial datasets for which their correlations across channels are analysed.
We compare our model against other MOGPs and the independent Gaussian process
on real financial data.
- Abstract(参考訳): 金融信号処理において、金融指標、株価、為替レートといった複数の時系列は、市場が潜んでいる状態に依存しているため強く結びついているので、共同で分析する必要がある。
我々は,多出力ガウス過程(MOGP)を表現的共分散関数でモデル化することで,金融時系列間の関係を学習することに集中する。
これらの金融シリーズ間の市場依存の学習は、金融観測のインプットと予測に不可欠である。
提案モデルは、チャネル間の相関が分析される2つの実世界の金融データセットで実験的に検証される。
我々は,本モデルと他のMOGPと,実際の財務データに対する独立ガウス過程を比較した。
関連論文リスト
- Large Language Models for Financial Aid in Financial Time-series Forecasting [0.4218593777811082]
金融支援の時系列予測は、限られた歴史的データセットと高次元財務情報のために困難である。
我々は、従来のアプローチよりも優れた性能を示すために、事前訓練されたLPM(GPT-2をバックボーンとする)、トランスフォーマー、線形モデルなど、最先端の時系列モデルを用いている。
論文 参考訳(メタデータ) (2024-10-24T12:41:47Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
大規模言語モデル (LLM) は、金融業界において自然言語処理を推進するための強力なツールとなっている。
SNFinLLMという中国の金融ドメイン向けに設計された新しい大規模言語モデルを提案する。
SNFinLLMは、質問への回答、財務調査レポートの要約、感情の分析、財務計算の実行など、ドメイン固有のタスクに優れています。
論文 参考訳(メタデータ) (2024-08-05T08:24:24Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinDiff: Diffusion Models for Financial Tabular Data Generation [5.824064631226058]
FinDiffは、さまざまな規制下流タスクのための現実世界の財務データを生成するために設計された拡散モデルである。
3つの実世界の財務データセットを用いて、最先端のベースラインモデルに対して評価される。
論文 参考訳(メタデータ) (2023-09-04T09:30:15Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Stock Embeddings: Learning Distributed Representations for Financial
Assets [11.67728795230542]
本稿では,過去のリターンデータのダイナミクスを利用する,ストック埋め込みのトレーニングのためのニューラルモデルを提案する。
当社のアプローチを詳細に説明し、金融分野で使用可能ないくつかの方法について論じる。
論文 参考訳(メタデータ) (2022-02-14T15:39:06Z) - Dual-CLVSA: a Novel Deep Learning Approach to Predict Financial Markets
with Sentiment Measurements [11.97251638872227]
本稿では、取引データとそれに対応する社会的感情測定の両方を用いて、個別のシーケンス・ツー・シーケンス・チャネルを通じて、金融市場の動きを予測するための新しい深層学習手法であるDouble-CLVSAを提案する。
その結果、両CLVSAは2種類のデータを効果的に融合させ、感情測定が金融市場の予測に有益であるだけでなく、予測システムの性能を高めるための余分な利益性も備えていることが明らかとなった。
論文 参考訳(メタデータ) (2022-01-27T20:32:46Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。