論文の概要: PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance
- arxiv url: http://arxiv.org/abs/2306.05443v1
- Date: Thu, 8 Jun 2023 14:20:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 16:05:09.457671
- Title: PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance
- Title(参考訳): PIXIU:ファイナンスのための大規模言語モデル、インストラクションデータ、評価ベンチマーク
- Authors: Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng,
Alejandro Lopez-Lira, Jimin Huang
- Abstract要約: PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
- 参考スコア(独自算出の注目度): 63.51545277822702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although large language models (LLMs) has shown great performance on natural
language processing (NLP) in the financial domain, there are no publicly
available financial tailtored LLMs, instruction tuning datasets, and evaluation
benchmarks, which is critical for continually pushing forward the open-source
development of financial artificial intelligence (AI). This paper introduces
PIXIU, a comprehensive framework including the first financial LLM based on
fine-tuning LLaMA with instruction data, the first instruction data with 136K
data samples to support the fine-tuning, and an evaluation benchmark with 5
tasks and 9 datasets. We first construct the large-scale multi-task instruction
data considering a variety of financial tasks, financial document types, and
financial data modalities. We then propose a financial LLM called FinMA by
fine-tuning LLaMA with the constructed dataset to be able to follow
instructions for various financial tasks. To support the evaluation of
financial LLMs, we propose a standardized benchmark that covers a set of
critical financial tasks, including five financial NLP tasks and one financial
prediction task. With this benchmark, we conduct a detailed analysis of FinMA
and several existing LLMs, uncovering their strengths and weaknesses in
handling critical financial tasks. The model, datasets, benchmark, and
experimental results are open-sourced to facilitate future research in
financial AI.
- Abstract(参考訳): 大規模言語モデル(LLM)は、金融分野における自然言語処理(NLP)に優れたパフォーマンスを示しているが、金融人工知能(AI)のオープンソース開発を継続的に進める上で重要な、財務調整用LLM、命令チューニングデータセット、評価ベンチマークは公開されていない。
本稿では,PIXIU,命令データ付き微調整LLaMAに基づく最初の金融LLM,微調整をサポートした136Kデータサンプルを用いた最初の命令データ,5つのタスクと9つのデータセットによる評価ベンチマークなどを紹介する。
まず,様々な財務課題,財務文書タイプ,財務データモダリティを考慮した大規模マルチタスク指導データを構築した。
そこで我々は,FinMAと呼ばれる金融LLMを提案する。LLaMAに構築したデータセットを微調整することで,様々な財務業務の指示に従うことができる。
金融llmの評価を支援するために、5つの金融nlpタスクと1つの財務予測タスクを含む一連の重要な金融タスクをカバーする標準ベンチマークを提案する。
本ベンチマークでは、FinMAおよび既存LLMの詳細な分析を行い、重要な財務課題に対処する際の長所と短所を明らかにする。
このモデル、データセット、ベンチマーク、実験結果は、金融AIにおける将来の研究を促進するためにオープンソース化されている。
関連論文リスト
- Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
大規模言語モデル(LLM)は高度な金融アプリケーションを持っているが、十分な財務知識がなく、テーブルや時系列データといったマルチモーダル入力に関わるタスクに苦労することが多い。
我々は、総合的な財務知識をテキスト、テーブル、時系列データに組み込む一連の金融LLMであるtextitOpen-FinLLMsを紹介する。
また、複雑な財務データ型を扱うために、1.43Mの画像テキスト命令で訓練されたマルチモーダルLLMであるFinLLaVAについても紹介する。
論文 参考訳(メタデータ) (2024-08-20T16:15:28Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
大規模言語モデル (LLM) は、金融業界において自然言語処理を推進するための強力なツールとなっている。
SNFinLLMという中国の金融ドメイン向けに設計された新しい大規模言語モデルを提案する。
SNFinLLMは、質問への回答、財務調査レポートの要約、感情の分析、財務計算の実行など、ドメイン固有のタスクに優れています。
論文 参考訳(メタデータ) (2024-08-05T08:24:24Z) - Financial Knowledge Large Language Model [4.599537455808687]
大規模言語モデル(LLM)の財務知識を評価するための評価ベンチマークであるIDEA-FinBenchを紹介する。
金融分野への一般LLMの迅速な適応を容易にするためのフレームワークであるIDEA-FinKERを提案する。
最後に LLM を利用した財務質問応答システム IDEA-FinQA を提案する。
論文 参考訳(メタデータ) (2024-06-29T08:26:49Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - A Survey of Large Language Models in Finance (FinLLMs) [10.195778659105626]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクで顕著な機能を示している。
この調査は、FinLLMの歴史、テクニック、パフォーマンス、機会と課題を含む、包括的な概要を提供する。
ファイナンスにおけるAI研究を支援するために、アクセス可能なデータセットと評価ベンチマークのコレクションをGitHubにコンパイルします。
論文 参考訳(メタデータ) (2024-02-04T02:06:57Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning [74.99318727786337]
金融大規模言語モデル(LLM)を構築するための多言語エキスパートファインチューニングフレームワークを提案する。
DISC-FIN-SFTという金融インストラクションチューニングデータセットを構築し、4つのカテゴリ(コンサルト、NLPタスク、コンピューティング、検索強化ジェネレーション)のインストラクションサンプルを含む。
複数のベンチマークで評価した結果, 様々な財務シナリオにおいて, ベースラインモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-10-23T11:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。