Semidefinite tests for quantum network topologies
- URL: http://arxiv.org/abs/2002.05801v2
- Date: Fri, 11 Sep 2020 18:49:48 GMT
- Title: Semidefinite tests for quantum network topologies
- Authors: Johan {\AA}berg, Ranieri Nery, Cristhiano Duarte, Rafael Chaves
- Abstract summary: Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing.
The question of which correlations a given quantum network can give rise to, remains almost uncharted.
We show that constraints on the observable covariances, previously derived for the classical case, also hold for quantum networks.
- Score: 0.9176056742068814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks play a major role in long-distance communication, quantum
cryptography, clock synchronization, and distributed quantum computing.
Generally, these protocols involve many independent sources sharing
entanglement among distant parties that, upon measuring their systems, generate
correlations across the network. The question of which correlations a given
quantum network can give rise to, remains almost uncharted. Here we show that
constraints on the observable covariances, previously derived for the classical
case, also hold for quantum networks. The network topology yields tests that
can be cast as semidefinite programs, thus allowing for the efficient
characterization of the correlations in a wide class of quantum networks, as
well as systematic derivations of device-independent and experimentally
testable witnesses. We obtain such semidefinite tests for fixed measurement
settings, as well as parties that independently choose among collections of
measurement settings. The applicability of the method is demonstrated for
various networks, and compared with previous approaches.
Related papers
- Source-independent quantum secret sharing with entangled photon pair networks [15.3505990843415]
We present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks.
Our protocol has great performance and technical advantages in future quantum networks.
arXiv Detail & Related papers (2024-07-23T13:24:28Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Certifying the Topology of Quantum Networks: Theory and Experiment [0.0]
It is crucial to characterize the topology of networks in a way that reveals the nodes between which entanglement can be reliably distributed.
Our scheme allows for distinguishing, in a scalable manner, different networks consisting of bipartite and multipartite entanglement sources.
We experimentally demonstrate our approach by certifying the topology of different six-qubit networks generated with polarized photons.
arXiv Detail & Related papers (2023-09-22T14:50:38Z) - Quantum-enhanced metrology with network states [8.515162179098382]
We prove a general bound that limits the performance of using quantum network states to estimate a global parameter.
Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.
arXiv Detail & Related papers (2023-07-15T09:46:35Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Extracting Bayesian networks from multiple copies of a quantum system [0.0]
We describe a general scheme to determine the multi-time path probability of a Bayesian network based on local measurements.
We show that this protocol corresponds to a non-projective measurement.
arXiv Detail & Related papers (2021-03-26T16:32:23Z) - Genuine quantum networks: superposed tasks and addressing [68.8204255655161]
We show how to make quantum networks, both standard and entanglement-based, genuine quantum.
We provide them with the possibility of handling superposed tasks and superposed addressing.
arXiv Detail & Related papers (2020-04-30T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.