論文の概要: Unsupervised Speaker Adaptation using Attention-based Speaker Memory for
End-to-End ASR
- arxiv url: http://arxiv.org/abs/2002.06165v1
- Date: Fri, 14 Feb 2020 18:31:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 04:23:57.198250
- Title: Unsupervised Speaker Adaptation using Attention-based Speaker Memory for
End-to-End ASR
- Title(参考訳): 終端ASRのための注意型話者メモリを用いた教師なし話者適応
- Authors: Leda Sar{\i}, Niko Moritz, Takaaki Hori, Jonathan Le Roux
- Abstract要約: エンドツーエンド音声認識(E2E)のためのニューラルチューリングマシンにインスパイアされた教師なし話者適応手法を提案する。
提案モデルでは,学習データから抽出した話者i-vectorを格納し,注意機構を通じてメモリから関連i-vectorを読み取るメモリブロックを含む。
テスト時に補助的な話者埋め込み抽出システムを必要としないMベクトルは、単話者発話のiベクトルと類似の単語誤り率(WER)を達成し、話者変化がある発話のWERを著しく低下させることを示す。
- 参考スコア(独自算出の注目度): 61.55606131634891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an unsupervised speaker adaptation method inspired by the neural
Turing machine for end-to-end (E2E) automatic speech recognition (ASR). The
proposed model contains a memory block that holds speaker i-vectors extracted
from the training data and reads relevant i-vectors from the memory through an
attention mechanism. The resulting memory vector (M-vector) is concatenated to
the acoustic features or to the hidden layer activations of an E2E neural
network model. The E2E ASR system is based on the joint connectionist temporal
classification and attention-based encoder-decoder architecture. M-vector and
i-vector results are compared for inserting them at different layers of the
encoder neural network using the WSJ and TED-LIUM2 ASR benchmarks. We show that
M-vectors, which do not require an auxiliary speaker embedding extraction
system at test time, achieve similar word error rates (WERs) compared to
i-vectors for single speaker utterances and significantly lower WERs for
utterances in which there are speaker changes.
- Abstract(参考訳): 本稿では,終端音声認識(E2E)のためのニューラルチューリングマシンにインスパイアされた教師なし話者適応手法を提案する。
提案モデルでは,学習データから抽出した話者i-vectorを格納し,注意機構を通じてメモリから関連i-vectorを読み取るメモリブロックを含む。
結果のメモリベクトル(Mベクトル)は、E2Eニューラルネットワークモデルの音響的特徴または隠蔽層活性化に連結される。
E2E ASRシステムは、接続型時間分類とアテンションベースのエンコーダ・デコーダアーキテクチャに基づいている。
WSJとTED-Lium2 ASRベンチマークを用いて、エンコーダニューラルネットワークの異なる層に挿入する際のMベクターとiベクターの結果を比較した。
実験時に補助的な話者埋め込み抽出システムを必要としないMベクターは、単話者発話のiベクターと類似の単語誤り率(WER)を達成し、話者変化がある発話のWERを著しく低下させることを示した。
関連論文リスト
- Streaming Speaker-Attributed ASR with Token-Level Speaker Embeddings [53.11450530896623]
本稿では,「誰が何を話したか」を認識可能な,ストリーミング話者対応自動音声認識(SA-ASR)モデルを提案する。
本モデルは,最近提案されたマルチトーカー音声をストリーミング形式で書き起こすためのトークンレベルシリアライズアウトプットトレーニング(t-SOT)に基づいている。
提案モデルでは,従来のストリーミングモデルよりも精度が大幅に向上し,最先端のオフラインSA-ASRモデルに匹敵する,あるいは時として優れた結果が得られる。
論文 参考訳(メタデータ) (2022-03-30T21:42:00Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
重なり合う音声のダイアリゼーションを単一ラベル予測問題として再構成する。
話者埋め込み認識型ニューラルダイアリゼーション(SEND)システムを提案する。
論文 参考訳(メタデータ) (2022-03-18T06:40:39Z) - Extended Graph Temporal Classification for Multi-Speaker End-to-End ASR [77.82653227783447]
ニューラルネットワークによるラベル遷移とラベル遷移の両方をモデル化するための GTC の拡張を提案する。
例として,多話者音声認識タスクに拡張GTC(GTC-e)を用いる。
論文 参考訳(メタデータ) (2022-03-01T05:02:02Z) - ASR-Aware End-to-end Neural Diarization [15.172086811068962]
本稿では、音響入力と自動音声認識(ASR)モデルから得られる特徴の両方を用いて、コンフォーマーに基づくエンドツーエンドニューラルダイアリゼーション(EEND)モデルを提案する。
この機能を組み込むために、ConformerベースのEENDアーキテクチャの3つの変更が提案されている。
Switchboard+SREデータセットの2つの話者による英語会話実験により、単語位置情報を用いたマルチタスク学習がASR特徴を利用する最も効果的な方法であることが示された。
論文 参考訳(メタデータ) (2022-02-02T21:17:14Z) - Transcribe-to-Diarize: Neural Speaker Diarization for Unlimited Number
of Speakers using End-to-End Speaker-Attributed ASR [44.181755224118696]
Transcribe-to-Diarizeは、エンド・ツー・エンド(E2E)話者による自動音声認識(SA-ASR)を用いたニューラルスピーカーダイアリゼーションの新しいアプローチである。
提案手法は,話者数不明の場合に,既存の話者ダイアリゼーション法よりも高いダイアリゼーション誤差率を実現する。
論文 参考訳(メタデータ) (2021-10-07T02:48:49Z) - Self-attention encoding and pooling for speaker recognition [16.96341561111918]
本研究では,非固定長音声音声の識別話者埋め込みを実現するために,タンデム自己認識・プーリング(SAEP)機構を提案する。
SAEPは、テキストに依存しない話者検証に使用される話者埋め込みに、短時間の話者スペクトル特徴を符号化する。
このアプローチをVoxCeleb1と2のデータセットで評価した。
論文 参考訳(メタデータ) (2020-08-03T09:31:27Z) - AutoSpeech: Neural Architecture Search for Speaker Recognition [108.69505815793028]
本稿では,AutoSpeech という名称の話者認識タスクに対して,最初のニューラルアーキテクチャ探索アプローチを提案する。
提案アルゴリズムはまず,ニューラルネットワークの最適操作の組み合わせを特定し,その後,複数回重ねてCNNモデルを導出する。
得られたCNNアーキテクチャは,モデル複雑性を低減しつつ,VGG-M,ResNet-18,ResNet-34のバックボーンに基づく現在の話者認識システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-05-07T02:53:47Z) - Streaming automatic speech recognition with the transformer model [59.58318952000571]
本稿では,ストリーミングASRのためのトランスフォーマーに基づくエンドツーエンドASRシステムを提案する。
本研究では,エンコーダに時間制限付き自己アテンションを適用し,エンコーダ・デコーダのアテンション機構に注意を喚起する。
提案したストリーミングトランスアーキテクチャは,LibriSpeechの「クリーン」および「他の」テストデータに対して,2.8%と7.2%のWERを実現する。
論文 参考訳(メタデータ) (2020-01-08T18:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。