Interpretable Goal-Based model for Vehicle Trajectory Prediction in
Interactive Scenarios
- URL: http://arxiv.org/abs/2308.04312v1
- Date: Tue, 8 Aug 2023 15:00:12 GMT
- Title: Interpretable Goal-Based model for Vehicle Trajectory Prediction in
Interactive Scenarios
- Authors: Amina Ghoul, Itheri Yahiaoui, Anne Verroust-Blondet, and Fawzi
Nashashibi
- Abstract summary: Social interaction between a vehicle and its surroundings is critical for road safety in autonomous driving.
We propose a neural network-based model for the task of vehicle trajectory prediction in an interactive environment.
We implement and evaluate our model using the INTERACTION dataset and demonstrate the effectiveness of our proposed architecture.
- Score: 4.1665957033942105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The abilities to understand the social interaction behaviors between a
vehicle and its surroundings while predicting its trajectory in an urban
environment are critical for road safety in autonomous driving. Social
interactions are hard to explain because of their uncertainty. In recent years,
neural network-based methods have been widely used for trajectory prediction
and have been shown to outperform hand-crafted methods. However, these methods
suffer from their lack of interpretability. In order to overcome this
limitation, we combine the interpretability of a discrete choice model with the
high accuracy of a neural network-based model for the task of vehicle
trajectory prediction in an interactive environment. We implement and evaluate
our model using the INTERACTION dataset and demonstrate the effectiveness of
our proposed architecture to explain its predictions without compromising the
accuracy.
Related papers
- Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
Navigating complex traffic environments has been significantly enhanced by advancements in intelligent technologies, enabling accurate environment perception and trajectory prediction for automated vehicles.
Existing research often neglects the consideration of the joint reasoning of scenario agents and lacks interpretability in trajectory prediction models.
An explainability-oriented trajectory prediction model is designed in this work, named Explainable Diffusion Conditional based Multimodal Trajectory Prediction Traj-Explainer.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles.
In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed.
The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data.
arXiv Detail & Related papers (2024-03-18T10:35:15Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - SFMGNet: A Physics-based Neural Network To Predict Pedestrian
Trajectories [2.862893981836593]
We present a physics-based neural network to predict pedestrian trajectories.
We quantitatively and qualitatively evaluate the model with respect to realistic prediction, prediction performance and prediction "interpretability"
Initial results suggest, the model even when solely trained on a synthetic dataset, can predict realistic and interpretable trajectories with better than state-of-the-art accuracy.
arXiv Detail & Related papers (2022-02-06T14:58:09Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
Forecasting human trajectories in complex dynamic environments plays a critical role in autonomous vehicles and intelligent robots.
Most existing methods learn to predict future trajectories by behavior clues from history trajectories and interaction clues from environments.
We propose a counterfactual analysis method for human trajectory prediction to investigate the causality between the predicted trajectories and input clues.
arXiv Detail & Related papers (2021-07-29T17:41:34Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.